Effects of Thermal Annealing on the Properties of Zirconium-Doped MgxZn1−XO Films Obtained through Radio-Frequency Magnetron Sputtering
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caglar, Y.; Caglar, M.; Ilican, S.; Aksoy, S.; Yakuphanoglu, F. Effect of channel thickness on the field effect mobility of ZnO-TFT fab-ricated by sol gel process. J. Alloys Compd. 2015, 621, 189–193. [Google Scholar] [CrossRef]
- Esro, M.; Vourlias, G.; Somerton, C.; Milne, W.I.; Adamopoulos, G. High-Mobility ZnO Thin Film Transistors Based on Solu-tion-processed Hafnium Oxide Gate Dielectrics. Adv. Func. Mater. 2015, 25, 134–141. [Google Scholar] [CrossRef]
- Zhou, D.; Li, B.; Wang, H.; Peng, Y.; Zhao, J.; Salik, M.; Yi, L.; Zhang, X.; Wang, Y. Effects of channel layer thickness and time on the electrical characteristics of ZnO: (Li, N) TFT. J. Alloys Compd. 2015, 648, 587–590. [Google Scholar] [CrossRef]
- You, H.C. Transistor characteristics of zinc oxide active layers at various zinc acetate dihydrate solution concentrations of zinc oxide thin-film. J. Appl. Res. Technol. 2015, 13, 291–296. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef]
- Neumann, M.D.; Cobet, C.; Esser, N.; Laumer, B.; Wassner, T.A.; Eickhoff, M.; Feneberg, M.; Goldhahn, R. Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes. J. Appl. Phys. 2011, 110, 013520. [Google Scholar] [CrossRef]
- Ghosh, R.; Basak, D. Composition dependent ultraviolet photoresponse in MgxZn1−xO thin films. J. Appl. Phys. 2007, 101, 113111. [Google Scholar] [CrossRef]
- Gorczyca, I.; Teisseyre, H.; Suski, T.; Christensen, N.E.; Svane, A. Structural and electronic properties of wurtzite MgZnO and BeMgZnO alloys and their thermodynamic stability. J. Appl. Phys. 2016, 120, 215704. [Google Scholar] [CrossRef]
- Hsueh, K.P.; Tun, C.J.; Chiu, H.C.; Huang, Y.P.; Chi, G.C. Effect of rapid thermal annealing on MgxZn1−xO films prepared by radio-frequency magnetron sputtering. J. Vac. Sci. Technol. B 2010, 28, 720–723. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Hu, C.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q. Ultraviolet emission from MgZnO films and ZnO/MgZnO single quantum wells grown by pulsed laser deposition. J. Cryst. Growth 2018, 483, 39–43. [Google Scholar] [CrossRef]
- Fujita, S.; Tanaka, H.; Fujita, S. MBE growth of wide band gap wurtzite MgZnO quasi-alloys with MgO/ZnO superlattices for deep ultraviolet optical functions. J. Crystal Growth. 2005, 278, 264–267. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Pan, X.; Wang, T.; Xie, E. The effects of thermal annealing on properties of MgxZn1−xO films by sputtering. J. Alloy. Compd. 2009, 472, 208–210. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.-H.; Song, W.-J.; Zhang, Y.-L.; Tan, R.-Q.; Yang, Y. Effects of post-annealing temperature on structural, optical, and electrical properties of MgxZn1−xO films by RF magnetron sputtering. J. Cryst. Growth 2011, 314, 136–140. [Google Scholar] [CrossRef]
- Türkyılmaz, Ş.Ş.; Güy, N.; Özacar, M. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A Chem. 2017, 341, 39–50. [Google Scholar] [CrossRef]
- Joshi, K.; Rawat, M.; Gautam, S.K.; Singh, R.; Ramola, R.; Singh, F. Band gap widening and narrowing in Cu-doped ZnO thin films. J. Alloys Compd. 2016, 680, 252–258. [Google Scholar] [CrossRef]
- Lung, C.; Toma, M.; Pop, M.; Marconi, D.; Pop, A. Characterization of the structural and optical properties of ZnO thin films doped with Ga, Al and (Al + Ga). J. Alloys Compd. 2017, 725, 1238–1243. [Google Scholar] [CrossRef]
- Herodotou, S.; Treharne, R.E.; Durose, K.; Tatlock, G.J.; Potter, R.J. The Effects of Zr Doping on the Optical, Electrical and Micro-structural Properties of Thin ZnO Films Deposited by Atomic Layer Deposition. Materials 2015, 8, 7230–7240. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Lee, W.-C. Effect of dopants on the structural, optical and electrical properties of sol–gel derived ZnO semiconductor thin films. Curr. Appl. Phys. 2013, 13, 60–65. [Google Scholar] [CrossRef]
- Sheu, J.K.; Shu, K.W.; Lee, M.L.; Tun, C.J.; Chi, G.C. Effect of Thermal Annealing on Ga-Doped ZnO Films Prepared by Magnetron Sputtering. J. Electrochem. Soc. 2007, 154, H521–H524. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi (b) 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Tan, S.T.; Chen, B.J.; Sun, X.W.; Fan, W.J.; Kwok, H.S.; Zhang, X.H.; Chua, S.J. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 2005, 98, 013505. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Zhang, Y.; Mo, D. Investigation of annealing-treatment on structural and optical properties of sol-gel-derived zinc oxide thin films. Bull. Mater. Sci. 2010, 33, 209–214. [Google Scholar] [CrossRef]
- Peng, X.; Barteau, M. Spectroscopic characterization of surface species derived from HCOOH, CH3COOH, CH3OH, C2H5OH, HCOOCH3, and C2H2 on MgO thin film surfaces. Surf. Sci. 1989, 224, 327–347. [Google Scholar] [CrossRef]
- Duan, X.M.; Stampfl, C.; Bilek, M.M.M.; McKenzie, D.R.; Wei, S.-H. Design of shallow acceptors in ZnO through early transition metals codoped with N acceptors. Phys. Rev. B 2011, 83, 085202. [Google Scholar] [CrossRef]
- Wang, F.; Lv, M.; Pang, Z.; Yang, T.; Dai, Y.; Han, S. Theoretical study of structural, optical and electrical properties of zirco-nium-doped zinc oxide. Appl. Surf. Sci. 2008, 254, 6983–6986. [Google Scholar] [CrossRef]
Temperature | Sheet Resistance Ohmic/sq | Mobility cm2/Vs | Carrier Concentration/ cm3 |
---|---|---|---|
As-deposited | N.A. | N.A. | N.A. |
700 °C/N2/60 s (RTA700°C) | 1.59 × 105 | 0.881 | −3.04 × 1018 |
800 °C/N2/60 s (RTA800°C) | 5.38 × 104 | 1.61 | −4.90 × 1018 |
900 °C/N2/60 s (RTA900°C) | 2.45 × 103 | 3.70 | −4.67 × 1019 |
1000 °C/N2/60 s (RTA1000°C) | 1.30 × 103 | 4.46 | −7.28 × 1019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-Y.; Chien, F.-T.; Chiu, H.-C.; Sheu, J.-K.; Hsueh, K.-P. Effects of Thermal Annealing on the Properties of Zirconium-Doped MgxZn1−XO Films Obtained through Radio-Frequency Magnetron Sputtering. Membranes 2021, 11, 373. https://doi.org/10.3390/membranes11050373
Lin W-Y, Chien F-T, Chiu H-C, Sheu J-K, Hsueh K-P. Effects of Thermal Annealing on the Properties of Zirconium-Doped MgxZn1−XO Films Obtained through Radio-Frequency Magnetron Sputtering. Membranes. 2021; 11(5):373. https://doi.org/10.3390/membranes11050373
Chicago/Turabian StyleLin, Wen-Yen, Feng-Tsun Chien, Hsien-Chin Chiu, Jinn-Kong Sheu, and Kuang-Po Hsueh. 2021. "Effects of Thermal Annealing on the Properties of Zirconium-Doped MgxZn1−XO Films Obtained through Radio-Frequency Magnetron Sputtering" Membranes 11, no. 5: 373. https://doi.org/10.3390/membranes11050373
APA StyleLin, W.-Y., Chien, F.-T., Chiu, H.-C., Sheu, J.-K., & Hsueh, K.-P. (2021). Effects of Thermal Annealing on the Properties of Zirconium-Doped MgxZn1−XO Films Obtained through Radio-Frequency Magnetron Sputtering. Membranes, 11(5), 373. https://doi.org/10.3390/membranes11050373