Influence of Organic Solvent Species on Dehydration Behaviors of NaA-Type Zeolite Membrane
Abstract
:1. Introduction
2. Experimental
2.1. Membrane Preparation
2.2. Characterization
2.3. Pervaporation Experiments
3. Results and Discussion
3.1. Characterization
3.2. Dehydration Performances
3.3. Evaluation of Permeation Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Antoine constant (dimensionless) |
B | Antoine constant (dimensionless) |
C | Antoine constant (dimensionless) |
Di* | diffusion coefficient of component i at infinite temperature (m2 s−1) |
ED | activation energy for diffusion (kJ mol−1) |
Ep | activation energy for permeation (kJ mol−1) |
−ΔHa | heat of adsorption (kJ mol−1) |
Ji | permeation flux of component i (mol m−2 s−1) |
Jt | overall permeation flux (kg m−2 h−1) |
k | Boltzmann constant (J K−1) |
Mi | molecular weight (kg mol−1) |
NHe | molar flow rate of helium (mol s−1) |
pi | partial pressure of component i (Pa) |
pt | total vapor pressure (Pa) |
Qi | permeance (mol m−2 s−1 Pa−1) |
Qi* | permeance at infinite temperature (mol m−2 s−1 Pa−1) |
R | gas constant (J mol−1 K−1) |
S | effective membrane area for permeation (m2) |
Si* | adsorption coefficient of component i at infinite temperature (mol m−3 Pa−1) |
Tb | boiling temperature (K) |
Vb | molar volume at boiling temperature (cm3 mol−1) |
xi | mole fraction of component i in solution (dimensionless) |
yi | mole fraction of component i in the evacuated stream (dimensionless) |
zi | mole fraction of component i in vapor phase (dimensionless) |
Symbols | |
αw/o | separation factor of water with respect to organic solvents (dimensionless) |
δ | membrane thickness (m) |
ε | depth of potential in Lennard-Jones potential (J) |
γi | activity coefficient of component i (dimensionless) |
Λij | Wilson parameter of components i-j (dimensionless) |
μ | dipole moment (D) |
σ | distance at zero interaction in Lennard-Jones potential (m) |
Subscripts | |
f | feed solution |
p | permeate side |
o | organic solvent |
w | water |
References
- Kondo, M.; Komori, M.; Kita, H.; Okamoto, K. Tubular-type Pervaporation Module with Zeolite NaA Membranes. J. Membr. Sci. 1997, 133, 133–141. [Google Scholar] [CrossRef]
- Morigami, Y.; Kondo, M.; Abe, J.; Kita, H.; Okamoto, K. The First Large-scale Pervaporation Plant Using Tubular-type Module with Zeolite NaA Membrane. Sep. Purif. Technol. 2001, 25, 251–260. [Google Scholar] [CrossRef]
- Sato, K.; Nakane, T. A High Reproducible Fabrication Method for Industrial Production of High Flux NaA Zeolite Membrane. J. Membr. Sci. 2007, 301, 151–161. [Google Scholar] [CrossRef]
- Sato, K.; Sugimoto, K.; Nakane, T. Preparation of High Flux NaA Zeolite Membrane on Asymmetric Porous Support and Permeation Behavior at High Temeratures up to 145 °C in Vapor Permeation. J. Membr. Sci. 2008, 307, 181–195. [Google Scholar] [CrossRef]
- Sato, K.; Aoki, K.; Sugimoto, K.; Izumi, K.; Inoue, S.; Saito, J.; Ikeda, S.; Nakane, T. Dehydrating Performance of Commercial LTA Zeolite Membranes and Application to Fuel Grade Bio-ethanol Production by Hybrid Distillation/Vapor Permeation Process. Micropor. Mesopor. Mater. 2008, 115, 184–188. [Google Scholar] [CrossRef]
- Okamoto, K.; Kita, H.; Horii, K.; Tanaka, K. Zeolite NaA Membrane: Preparation, Single-gas Permeation, and Pervaporation and Vapor Permeation of Water/Organic Liquid Mixtures. Ind. Eng. Chem. Res. 2001, 40, 163–175. [Google Scholar] [CrossRef]
- Sommer, S.; Melin, T. Influence of Operation Parameters on the Separation of Mixtures by Pervaporation and Vapor Permeation with Inorganic Membranes. Part 1: Dehydration of Solvents. Chem. Eng. Sci. 2005, 60, 4509–4523. [Google Scholar] [CrossRef]
- Sommer, S.; Melin, T. Influence of Operation Parameters on the Separation of Mixtures by Pervaporation and Vapor Permeation with Inorganic Membranes. Part 2: Purely Organic Systems. Chem. Eng. Sci. 2005, 60, 4525–4533. [Google Scholar] [CrossRef]
- Imasaka, S.; Itakura, M.; Yano, K.; Fujita, S.; Okada, M.; Hasegawa, Y.; Abe, C.; Araki, S.; Yamamoto, H. Rapid Preparation of High-silica CHA-type Zeolite Membranes and Their Separation Properties. Sep. Purif. Technol. 2018, 199, 298–303. [Google Scholar] [CrossRef]
- Sato, K.; Sugimoto, K.; Shimotsuma, N.; Kikuchi, T.; Kyotani, T.; Kurata, T. Development of Practically Available Up-scaled High-silica CHA-type Zeolite Membranes for Industrial Purpose in Dehydration of N-methyl Pyrrolidone Solution. J. Membr. Sci. 2012, 409, 82–95. [Google Scholar] [CrossRef]
- Zeng, W.; Li, B.; Li, H.; Li, W.; Jin, H.; Li, Y. Mass Produced NaA Zeolite Membranes for Pervaporative Recycling of Spent N-methyl-2-Pyrrolidone in the Manufacturing Process for Lithium-ion Battery. Sep. Purif. Technol. 2019, 228, 115741. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liu, J.; Yang, W. Microwave Synthesis of LTA Zeolite Membranes without Seeding. J. Membr. Sci. 2006, 277, 230–239. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Abe, C.; Ikeda, A. Pervaporative Dehydration of Organic Solvents Using High-silica CHA-type Zeolite Membrane. Membranes 2021, 11, 229. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Nagase, T.; Kiyozumi, Y.; Hanaoka, T.; Mizukami, F. Influence of Acid on the Permeation Properties of NaA-type Zeolite Membranes. J. Membr. Sci. 2010, 349, 189–194. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kimura, K.; Nemoto, Y.; Nagase, T.; Kiyozumi, Y.; Nishide, T.; Mizukami, F. Real-time Monitoring of Permeation Properties through Polycrystalline MFI-type Zeolite Membranes during Pervaporation Using Mass-spectrometry. Sep. Purif. Technol. 2008, 58, 386–392. [Google Scholar] [CrossRef]
- Holmes, M.J.; Winkle, M.V. Prediction of Ternary Vapor-liquid Equilibria from Binary Data. Ind. Eng. Chem. 1970, 62, 21–31. [Google Scholar] [CrossRef]
- Kyotani, T.; Kakui, S.; Mizuno, T.; Shimotsuma, N.; Inoue, S.; Saito, J. Evaluation of Fine Structure of Tubular Zeolite NaA Membrane by FTIR-ATR and FIB-TEM. Anal. Sci. 2006, 22, 1031–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Breck, D.W. Zeolite Molecular Sieves; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Liu, Z.; Ohsuna, T.; Sato, K.; Mizuno, T.; Kyotani, T.; Nakane, T.; Terasaki, O. Transmission Electron Microscopy Observation on Fine Structure of Zeolite NaA Membrane. Chem. Mater. 2006, 18, 922–927. [Google Scholar] [CrossRef]
- Van Leeuwen, M.E. Derivation of Stockmayer Potential Parameters for Polar Fluids. Fluid Phase Equilibria 1994, 99, 1–18. [Google Scholar] [CrossRef]
- Krishna, R. Multicomponent Surface Diffusion of Adsorbed Species: A Description Based on the Generalized Maxwell-Stefan Equations. Chem. Eng. Sci. 1990, 45, 1779–1791. [Google Scholar] [CrossRef]
- Bakker, W.J.W.; van den Broeke, L.J.P.; Kapteijn, F.; Moulijn, J.A. Temperature Dependence of One-component Permeation through a Silicalite-1 Membrane. AIChE J. 1997, 43, 2203–2214. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kusakabe, K.; Morooka, S. Effect of Temperature on the Gas Permeation Properties of NaY-type Zeolite Formed on the Inner Surface of a Porous Support Tube. Chem. Eng. Sci. 2001, 56, 4273–4281. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Abe, C.; Natsui, M.; Ikeda, A. Gas Permeation Properties of High-silica CHA-type Zeolite Membrane. Membranes 2021, 11, 249. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Kita, H.; Okamoto, K. Zeolite T membrane: Preparation, Characterization, Pervaporation of Water/Organic Liquid Mixtures and Acid Stability. J. Membr. Sci. 2004, 236, 17–27. [Google Scholar] [CrossRef]
Solvent | Antoine Constant | Wilson Parameter | |||
---|---|---|---|---|---|
A | B | C | Λwo | Λow | |
Water | 8.02754 | 1705.616 | 231.405 | ----- | ----- |
Methanol | 8.07919 | 1581.34 | 239.65 | 0.89781 | 0.55148 |
Ethanol | 8.04494 | 1554.3 | 222.65 | 0.79133 | 0.21618 |
1-Propanol | 7.99733 | 1569.7 | 209.50 | 0.61233 | 0.04793 |
2-Propanol | 6.6604 | 813.055 | 132.93 | 0.77714 | 0.04857 |
Acetonitrile | 7.07354 | 1279.20 | 224.00 | 0.20540 | 0.20121 |
Acetone | 7.29958 | 1312.25 | 240.705 | 0.42161 | 0.15813 |
MEK | 6.97421 | 1209.6 | 216.00 | 0.03790 | 0.30482 |
THF | 6.99515 | 1202.29 | 226.254 | 0.01394 | 0.24477 |
DMA | 6.81565 | 1370.08 | 183.19 | 1.32523 | 1.27852 |
DMF | 6.80578 | 1337.72 | 190.502 | 1.07720 | 1.41270 |
DMSO | 7.76374 | 2048.74 | 231.556 | 2.60461 | 0.96533 |
NMP | 6.9408 | 1528.93 | 185.05 | 0.90247 | 0.82095 |
Solvent | xw (wt%) | T (K) | Jt (kg m−2 h−1) | aw/o (-) |
---|---|---|---|---|
Methanol | 10 | 336 | 2.42 | 7590 |
Ethanol | 10 | 348 | 3.82 | 73,800 |
1-Propanol | 10 | 347 | 4.74 | >100,000 |
2-Propanol | 10 | 348 | 4.88 | 40,000 |
tert-Amyl alcohol | 10 | 348 | 6.38 | 33,600 |
Acetonitrile | 10 | 347 | 5.76 | >100,000 |
Acetone | 10 | 327 | 2.34 | >100,000 |
MEK | 10 | 340 | 3.56 | 39,500 |
THF | 10 | 336 | 3.46 | 9720 |
DMA | 10 | 348 | 1.98 | 744 |
DMF | 10 | 347 | 1.45 | 1290 |
DMSO | 10 | 347 | 0.98 | 5730 |
NMP | 10 | 344 | 4.05 | 1930 |
Zeolite | Solvent | xw (wt%) | T (K) | Jt (kg m−2 h−1) | aw/o (-) | Ref. |
---|---|---|---|---|---|---|
NaA | Ethanol | 10 | 348 | 3.82 | 73,800 | This work |
2-Propanol | 10 | 348 | 4.88 | 40,000 | ||
NMP | 10 | 344 | 4.05 | 1930 | ||
Ethanol | 10 | 348 | 2.15 | 10,000 | [6] | |
2-Propanol | 10 | 348 | 1.76 | 10,000 | ||
Ethanol | 10 | 348 | 8.50 | >10,000 | [4] | |
Ethanol | 10 | 343 | 2.85 | 10,000 | [12] | |
NMP | 10 | 353 | 0.68 | 239 |
Solvents | Mi (103 kg mol−1) | Tb (K) | µ (D) | σ (nm) | ε/k (K) |
---|---|---|---|---|---|
Water | 18.0 | 373 | 1.82 | 0.296 | 382 |
Methanol | 32.0 | 338 | 1.71 | 0.380 | 359 |
Ethanol | 46.1 | 352 | 1.73 | 0.430 | 373 |
1-Propanol | 60.1 | 370 | 1.69 | 0.469 | 398 |
2-Propanol | 60.1 | 355 | 1.66 | 0.470 | 377 |
tert-Amyl alcohol | 88.1 | 375 | 1.90 | 0.581 1 | 453 1 |
Acetonitrile | 41.1 | 355 | 3.92 | 0.486 | 176 |
Acetone | 58.1 | 329 | 2.88 | 0.469 | 326 |
MEK | 72.1 | 353 | 2.80 | 0.504 | 394 |
THF | 72.1 | 339 | 1.63 | 0.486 | 403 |
DMA | 87.1 | 438 | 3.82 | 0.491 1 | 783 1 |
DMF | 73.1 | 426 | 3.86 | 0.582 1 | 623 1 |
DMSO | 78.1 | 462 | 4.30 | 0.381 1 | 813 1 |
NMP | 99.1 | 475 | 3.59 | 0.651 1 | 616 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasegawa, Y.; Matsuura, W.; Abe, C.; Ikeda, A. Influence of Organic Solvent Species on Dehydration Behaviors of NaA-Type Zeolite Membrane. Membranes 2021, 11, 347. https://doi.org/10.3390/membranes11050347
Hasegawa Y, Matsuura W, Abe C, Ikeda A. Influence of Organic Solvent Species on Dehydration Behaviors of NaA-Type Zeolite Membrane. Membranes. 2021; 11(5):347. https://doi.org/10.3390/membranes11050347
Chicago/Turabian StyleHasegawa, Yasuhisa, Wakako Matsuura, Chie Abe, and Ayumi Ikeda. 2021. "Influence of Organic Solvent Species on Dehydration Behaviors of NaA-Type Zeolite Membrane" Membranes 11, no. 5: 347. https://doi.org/10.3390/membranes11050347
APA StyleHasegawa, Y., Matsuura, W., Abe, C., & Ikeda, A. (2021). Influence of Organic Solvent Species on Dehydration Behaviors of NaA-Type Zeolite Membrane. Membranes, 11(5), 347. https://doi.org/10.3390/membranes11050347