Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling
Abstract
:1. Introduction
2. Fouling
3. Reversible Fouling Treatment (Physical Methods)
3.1. Flushing/Rinsing
3.2. Backwashing/Backflushing
3.3. Backpulsing
3.4. Air Enhanced Backflushing
3.5. Ultrasound
3.6. Electric Field
4. Irreversible Fouling Treatment (Chemical Methods)
4.1. Cleaning-In-Place Procedures
4.2. Cleaning-In-Place Reagents
4.2.1. Alkalis
4.2.2. Acids
4.2.3. Chelating Agents
Membrane, Material, Configuration | Reagent | Concentration | Temperature, °C | Time, min | Flux Decline | CIP Regularity | Efficiency | Filtering Solution | Reference |
---|---|---|---|---|---|---|---|---|---|
Ultrafiltration (UF) Ceramic (α-Al2O3) | NaOH Ultrasil P3-14, Ultrasil P3-10 | 1% w/w n/a | RT | 30–60 | n/a | Galactosyl-oligosaccharides | [78] | ||
UF and MF Ceramic | NaOH Water Citric acid | 6% - 6% | RT 25 RT | 30 30 30 | n/a | Mains water | [79] | ||
Microfiltration Ceramic (α-Al2O3) | Water NaOH Water Citric acid Water | - 2% - 2% - | RT 70-80 RT 70-80 RT | 10 20 10 20 10 | n/a | API effluent | [80] | ||
UF Ceramic (α-Al2O3) | NaOCl H2O2 | 200 ppm (0.02%) 500 ppm (0.05%) | NM | 15 | Every 1.5 h | n/a | Lake water with electrocoagulation pre-treatment | [81] | |
UF Ceramic (α-Al2O3) | HNO3 NaOH | 2% 2% | 40 40 | 40 40 | n/a | Sugarcane juice | [41] | ||
UF Ceramic (α-Al2O3) | NaOH Free chlorine | 1% 3000 ppm | 40 40 | 60 | n/a | Sugarcane juice | [41] | ||
UF Ceramic Zirconite | Mix of NaOH and NaClO (w/w) water HNO3 | 1% 0.5% 0.5% | 60 | 120 15 | 97.5% | Sugarcane juice | [3] | ||
UF Ceramic Zirconite | Mix of NaOH and NaClO | 1% 0.5% | 60 | 120 | 79.8% | Sugarcane juice | [3] | ||
UF Ceramic Zirconite | NaOH NaOCl | 1% 0.5% | 60 | 120 120 | 82.6% | Sugarcane juice | [3] | ||
UF Ceramic Zirconite | NaOCl NaOH | 0.5% 1% | 60 | 120 120 | 80.5% | Sugarcane juice | [3] | ||
UF α-Alumina Support Coated with LaPO4 nanofibrils | Mix of NaOH and NaClO HNO3 | 1% 0.5% 0.5% | n/a | 180 30 | 98.65% | Every 60 min | 87% | Sugarcane juice | [82] |
α-Al2O3 200 nm | 2% (w/w) NaOH and 0.15 M HNO3 | 40 | n/a | n/a | n/a | Rice wine | [83] | ||
Al2O3 10 nm | Hexane | ~80 min | Reaching the mass concentration factor equal to 3.2 | ~100% | Crude soybean oil and hexane mixture, 32% in soybean oil | [84] | |||
Ceramic 50 nm | Free chlorine HClO3 NaOH HNO3 | 250 ppm 20% 10% | n/a | 20 - - | When flux dropped below effluent production rate required to match the influent flow | n/a | Simulated newsprint mill wastewater | [85] | |
Ceramic UF with Zirconite | Mixture of NaOH and SDS HNO3 Mixture of NaClO and NaOH | 20 g/L 2 g/L 0.5% 250 ppm Cl2 0.5 μg/L | 50 50 30 | 30 30 15 | ~100% | Wastewaters from fish processing | [6] | ||
ZrO2, Al2O3, TiO2 100 nm | Citric acid NaOCl | 1% 3000 ppm | n/a n/a | 120 120 | n/a | Surface (lake) water | [10] | ||
ZrO2 | Enzyme Maxatase® | 5.0 /L | 50 | 20 | ~100% | Whey protein | [86] | ||
Aluminum Oxide 50 nm | Water jet | High pH bath NaClO (200 ppm free chlorine) adjusted to a pH of 11 Low pH bath distilled water adjusted to a pH of 2 using HNO3 | 60 25 min | TMP incrased to greater than 0.5 bar | Every 48 h | Real primary effluent wastewater | [87] |
4.2.4. Surfactants/Detergents
4.2.5. Disinfectants/Oxidising Agents
4.2.6. Enzymes
5. Future Perspectives
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luque, S.; Gomez, D.; Alvarez, J.R. Industrial Applications of Porous Ceramic Membranes (Pressure-Driven Processes). In Membrane Science and Technology; Mallada, R., Menendez, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 13, pp. 177–216. [Google Scholar]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters–A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Li, W.; Ling, G.; Lei, F.; Li, N.; Peng, W.; Li, K.; Lu, H.; Hang, F.; Zhang, Y. Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice. Sep. Purif. Technol. 2018, 190, 9–24. [Google Scholar] [CrossRef]
- Berk, Z. Food Process Engineering and Technology, 2nd ed.; Elsevier: London, UK, 2009; pp. 233–257. [Google Scholar]
- Ciora, R.J.; Liu, P.K.T. Ceramic membranes for environmental related applications. Fluid/Particle Sep. J. 2003, 15, 51–60. [Google Scholar]
- Pérez-Gálvez, R.; Guadix, E.M.; Berge, J.-P.; Guadix, A. Operation and cleaning of ceramic membranes for the filtration of fish press liquor. J. Membr. Sci. 2011, 384, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komolikov, Y.I.; Blaginina, L.A. Technology of ceramic ultrafiltration membranes. Ogneup. Tekhnicheskaya Keram. 2002, 43, 20–28. [Google Scholar]
- Shang, R.; Vuong, F.; Hu, J.; Li, S.; Kemperman, A.J.; Nijmeijer, K.; Cornelissen, E.R.; Heijman, S.G.; Rietveld, L.C. Hydraulically irreversible fouling on ceramic MF/UF membranes: Comparison of fouling indices, foulant composition and irreversible pore narrowing. Sep. Purif. Technol. 2015, 147, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Hofs, B.; Ogier, J.; Vries, D.; Beerendonk, E.F.; Cornelissen, E.R. Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 2011, 79, 365–374. [Google Scholar] [CrossRef]
- Mueller, U.; Biwer, G.; Baldauf, G. Ceramic membranes for water treatment. Water Supply 2010, 10, 987–994. [Google Scholar] [CrossRef]
- Jermann, D.; Pronk, W.; Meylan, S.; Boller, M. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Res. 2007, 41, 1713–1722. [Google Scholar] [CrossRef]
- Abdelrasoul, A.; Doan, H.; Lohi, A. Fouling in Membrane Filtration and Remediation Methods. In Mass Transfer—Advances in Sustainable Energy and Environment Oriented Numerical Modeling; Nakajima, H., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Bucs, S.; Kruithof, J.; van Loosdrecht, J.S.; Vrouwenvelder, M.C.M. Biofouling of Membrane Systems; IWA Publishing: London, UK, 2018. [Google Scholar]
- Leam, J.J.; Bilad, M.R.; Wibisono, Y.; Wirzal, M.D.H.; Ahmed, I. Membrane Technology for Microalgae Harvesting. In Microalgae Cultivation for Biofuels Production; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 97–110. [Google Scholar]
- Kurth, C.J.; Wise, B.L.; Smith, S. Design considerations for implementing ceramics in new and existing polymeric UF systems. Water Pract. Technol. 2018, 13, 725–737. [Google Scholar] [CrossRef]
- Wise, B.L.; Kumar, A.; Smith, S.; Hugaboom, D. Hydraulic Cleaning Method for Ceramic Membranes–A More Conventional Approach to Facilitate Retrofits Hydraulic Cleaning Methods for UF/MF Membranes. Available online: https://www.nanostone.com/_assets/AMTA-MTC_Paper_-_Hydraulic_Cleaning_Methods_for_Ceramic_Membranes.pdf (accessed on 17 January 2021).
- Peinemann, K.V.; Nunes, S.P. Membrane Technology: Volume 4: Membranes for Water Treatment; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 1–237. [Google Scholar]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Mohammad, A.; Teow, Y.; Ang, W.; Chung, Y.; Oatley-Radcliffe, D.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Vedavyasan, C.V. Chemical Cleaning of Membranes. In Encyclopedia of Membranes, 1st ed.; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, S.; Laabs, C.; Lesjean, B.; Gnirss, R.; Amy, G.; Jekel, M.; Schrotter, J.-C. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res. 2006, 40, 710–720. [Google Scholar] [CrossRef]
- Gallego Ocampo, H.L.; Erickson, L.E.; Velez Pasos, C.A.; Barka, F.V. Impact of Pectin, Cellulose, and Lignin on Membrane Fouling Indicators during Cross-flow Microfiltration of Model Solutions. J. Membr. Sci. Technol. 2016, 6, 1–9. [Google Scholar]
- Mancinelli, D.; Hallé, C. Nano-Filtration and Ultra-Filtration Ceramic Membranes for Food Processing: A Mini Review. J. Membr. Sci. Technol. 2015, 5, 1–13. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, P.K.; Lee, W.N.; Hwang, B.K.; Hong, S.H.; Yeon, K.M.; Oh, H.S.; Chang, I.S. Correlation of biofouling with the bio-cake architecture in an MBR. Desalination 2008, 231, 115–123. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xiao, P.; Wang, Y.; Hao, Y. Mechanisms and Control Measures of Mature Biofilm Resistance to Antimicrobial Agents in the Clinical Context. ACS Omega 2020, 5, 22684–22690. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Lah, N.F.C.; Ismail, S.; Ooi, B.S. Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Sep. Purif. Rev. 2012, 41, 318–346. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process. Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Aktij, S.A.; Taghipour, A.; Rahimpour, A.; Mollahosseini, A.; Tiraferri, A. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics 2020, 108, 106228. [Google Scholar] [CrossRef]
- Lamminen, M.O.; Walker, H.W.; Weavers, L.K. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci. 2004, 237, 213–223. [Google Scholar] [CrossRef]
- Wu, T.Y.; Guo, N.; Teh, C.Y.; Hay, J.X.W. Advances in Ultrasound Technology for Environmental Remediation; Springer International Publishing: New York, NY, USA, 2013; pp. 1–120. [Google Scholar]
- Adewuyi, Y.G. Sonochemistry: Environmental Science and Engineering Applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715. [Google Scholar] [CrossRef]
- Shahraki, M.H.; Maskooki, A.; Faezian, A. Effect of various sonication modes on permeation flux in cross flow ultrafiltration membrane. J. Environ. Chem. Eng. 2014, 2, 2289–2294. [Google Scholar] [CrossRef]
- Shu, L.; Xing, W.; Xu, N. Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes. Chin. J. Chem. Eng. 2007, 15, 855–860. [Google Scholar] [CrossRef]
- Lamminen, M.O.; Walker, H.W.; Weavers, L.K. Cleaning of particle-fouled membranes during cross-flow filtration using an embedded ultrasonic transducer system. J. Membr. Sci. 2006, 283, 225–232. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Weng, Y.-H.; Lin, A.Y.-C.; Li, K.-C. Electro-microfiltration treatment of water containing natural organic matter and inorganic particles. Desalination 2011, 267, 133–138. [Google Scholar] [CrossRef]
- Jagannadh, S.N.; Muralidhara, H.S. Electrokinetics Methods To Control Membrane Fouling. Ind. Eng. Chem. Res. 1996, 35, 1133–1140. [Google Scholar] [CrossRef]
- Huotari, H.; Trägårdh, G.; Huisman, I. Crossflow Membrane Filtration Enhanced by an External DC Electric Field: A Review. Chem. Eng. Res. Des. 1999, 77, 461–468. [Google Scholar] [CrossRef]
- Li, S.; Heijman, S.; Verberk, J.; Verliefde, A.; Kemperman, A.; Van Dijk, J.; Amy, G. Impact of backwash water composition on ultrafiltration fouling control. J. Membr. Sci. 2009, 344, 17–25. [Google Scholar] [CrossRef]
- Cimini, A.; Moresi, M. Pale Lager Clarification Using Novel Ceramic Hollow-Fiber Membranes and CO2 Backflush Program. Food Bioproc. Tech. 2015, 8, 2212–2224. [Google Scholar] [CrossRef]
- Chang, H.; Liang, H.; Qu, F.; Ma, J.; Ren, N.; Li, G. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition. J. Environ. Sci. (China) 2016, 43, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.H. Crossflow microfiltration with backpulsing. In Membrane Separations in Biotechnology, 2nd ed.; Wang, W.K., Ed.; Marcel Dekker: New York, NY, USA, 2001; pp. 161–188. [Google Scholar]
- Yang, J.; Jensen, B.B.B.; Nordkvist, M.; Rasmussen, P.; Gernaey, K.V.; Krühne, U. CFD modelling of axial mixing in the intermediate and final rinses of cleaning-in-place procedures of straight pipes. J. Food Eng. 2018, 221, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Verberk, J.; Van Dijk, H. Research on AirFlush®: Distribution of water and air in tubular and capillary membrane modules. Water Supply 2003, 3, 409–414. [Google Scholar] [CrossRef]
- Kim, H.-G.; Park, C.; Yang, J.; Lee, B.; Kim, S.-S.; Kim, S. Optimization of backflushing conditions for ceramic ultrafiltration membrane of disperse dye solutions. Desalination 2007, 202, 150–155. [Google Scholar] [CrossRef]
- Haas, R.; Opitz, R.; Grischek, T.; Otter, P. The AquaNES Project: Coupling Riverbank Filtration and Ultrafiltration in Drinking Water Treatment. Water 2018, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Zhang, M.; Yao, M.; Qiu, Z.; Hong, Y.; Lan, W.; Xia, H.; Jin, X. Membrane Fouling and Performance of Flat Ceramic Membranes in the Application of Drinking Water Purification. Water 2019, 11, 2606. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Qin, J.; Wang, Z.; Østerhus, S.W. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. J. Membr. Sci. 2019, 587, 117136. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Dudek, M.; Qin, J.; Øye, G.; Østerhus, S.W. A multivariate study of backpulsing for membrane fouling mitigation in produced water treatment. J. Environ. Chem. Eng. 2020, 104839. [Google Scholar] [CrossRef]
- Parnham, C.S.; Davis, R.H. Protein recovery from bacterial cell debris using crossflow microfiltration with backpulsing. J. Membr. Sci. 1996, 118, 259–268. [Google Scholar] [CrossRef]
- Jegatheesan, V.; Phong, D.D.; Shu, L.; Ben Aim, R. Performance of ceramic micro- and ultrafiltration membranes treating limed and partially clarified sugar cane juice. J. Membr. Sci. 2009, 327, 69–77. [Google Scholar] [CrossRef]
- Yusuf, Z.; Wahab, N.A.; Sahlan, S. Fouling control strategy for submerged membrane bioreactor filtration processes using aeration airflow, backwash, and relaxation: A review. Desalin. Water Treat. 2015, 57, 17683–17695. [Google Scholar] [CrossRef]
- Chen, D.; Weavers, L.K.; Walker, H.W. Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrason. Sonochem. 2006, 13, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Kokugan, T.; Kaseno; Fujiwara, S.; Shimizu, M. Ultrasonic Effect on Ultrafiltration Properties of Ceramic Membrane. Membranes 1995, 20, 213–223. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Z.; Ma, J.; Xu, S.; Wu, Z. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters. Environ. Sci. Technol. 2018, 52, 4117–4126. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.; Teoh, Y.; Teow, Y.; Mohammad, A. Life cycle assessment (LCA) of electrically-enhanced POME filtration: Environmental impacts of conductive-membrane formulation and process operating parameters. J. Environ. Manag. 2021, 277, 111434. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, L.; Gao, B.; Yang, F.; Crittenden, J.C.; Ren, N. Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment. Int. J. Hydrog. Energy 2014, 39, 17865–17872. [Google Scholar] [CrossRef]
- Ardakani, M.N.; Gholikandi, G.B. Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery -A state-of-the-art review. Biomass Bioenergy 2020, 141, 105726. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 2015, 82, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Madaeni, S.S.; Mohamamdi, T.; Moghadam, M.K. Chemical cleaning of reverse osmosis membranes. Desalination 2001, 134, 77–82. [Google Scholar] [CrossRef]
- Jude, B.; Lemaire, E. How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations. Schneider Electric White Paper. Available online: https://download.schneider-electric.com/files?p_enDocType=White+Paper&p_File_Name=998-2095-12-09-13AR0_EN_CIP.pdf&p_Doc_Ref=998-2095-12-09-13AR0_EN (accessed on 17 January 2021).
- Li, H.; Chen, V. Membrane Fouling and Cleaning in Food and Bioprocessing. In Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing; Cui, Z.F., Muralidhara, H.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 213–254. [Google Scholar]
- Tetra Pak Processing Systems. Cleaning in Place—A Guide to Cleaning Technology in the Food Processing Industry. Tetra Pack Processing Systems. Available online: https://tpcomprod.blob.core.windows.net/static/documents/cip-guide.pdf (accessed on 17 January 2021).
- Bahnasawy, A.H.; Shenana, M.E. Flux behavior and energy consumption of Ultrafiltration (UF) Process of milk. Aust. J. Agric. Res. 2010, 1, 54–65. [Google Scholar]
- Trägårdh, G. Membrane cleaning. Desalination 1989, 71, 325–335. [Google Scholar] [CrossRef]
- Olk, D.C.; Bloom, P.R.; Perdue, E.M.; McKnight, D.M.; Chen, Y.; Farenhorst, A.; Senesi, N.; Chin, Y.P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Cleaning Cycle of Fouled Membranes. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 412–416. [Google Scholar]
- Regula, C.; Carretier, E.; Wyart, Y.; Gésan-Guiziou, G.; Vincent, A.; Boudot, D.; Moulin, P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014, 56, 325–365. [Google Scholar] [CrossRef]
- Porcelli, N.; Judd, S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. 2010, 71, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Alresheedi, M.T.; Basu, O.D. Effects of feed water temperature on irreversible fouling of ceramic ultrafiltration membranes. J. Water Process Eng. 2019, 31, 100883. [Google Scholar] [CrossRef]
- Rudolph, G.; Schagerlöf, H.; Krogh, K.B.M.; Jönsson, A.-S.; Lipnizki, F. Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes 2018, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Hatlar Group Pty Ltd. Clean–in–Place Best Practice Guidelines–Part I Compare CIP with Best Practice. Available online: https://www.clearwatervic.com.au/user-data/research-projects/swf-files/final-guidelines---parts-1--2-and-3-combined.pdf (accessed on 17 January 2021).
- Thomas, A.; Sathian, C.T. Cleaning-In-Place (CIP) System in Dairy Plant-Review. IOSR-JESTFT 2014, 8, 41–44. [Google Scholar] [CrossRef]
- Yang, J.; Kjellberg, K.; Jensen, B.B.B.; Nordkvist, M.; Gernaey, K.V.; Krühne, U. Investigation of the cleaning of egg yolk deposits from tank surfaces using continuous and pulsed flows. Food Bioprod. Process. 2019, 113, 154–167. [Google Scholar] [CrossRef]
- Lee, H.; Amy, G.; Cho, J.; Yoon, Y.; Moon, S.-H.; Kim, I.S. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res. 2001, 35, 3301–3308. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Placido, L.; Engel, L.; Ashaghi, K.S.; Czermak, P. A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 2010, 250, 1105–1108. [Google Scholar] [CrossRef] [Green Version]
- Zsirai, T.; Qiblawey, H.; Buzatu, P.; Al-Marri, M.; Judd, S. Cleaning of ceramic membranes for produced water filtration. J. Pet. Sci. Eng. 2018, 166, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Abadi, S.R.H.; Sebzari, M.R.; Hemati, M.; Rekabdar, F.; Mohammadi, T. Ceramic membrane performance in microfiltration of oily wastewater. Desalination 2011, 265, 222–228. [Google Scholar] [CrossRef]
- Özdemir, K. A Ceramic ultrafiltration membrane system for producing high quality drinking water. Karaelmas Fen Müh. Derg. 2016, 61, 41–4941. [Google Scholar]
- Akhtar, A.; Subbiah, S.; Mohanty, K.; Sundar, R.; Unnikrishnan, R.; Hareesh, U. Sugarcane juice clarification by lanthanum phosphate nanofibril coated ceramic ultrafiltration membrane: PPO removal in absence of lime pre-treatment, fouling and cleaning studies. Sep. Purif. Technol. 2020, 249, 117157. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Zhou, S.; Xing, W. Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis. Desalination 2010, 256, 166–173. [Google Scholar] [CrossRef]
- Basso, R.C.; Viotto, L.A.; Gonçalves, L.A.G. Cleaning process in ceramic membrane used for the ultrafiltration of crude soybean oil. Desalination 2006, 200, 85–86. [Google Scholar] [CrossRef]
- Ragona, C.S.F.; Hall, E.R. Parallel operation of ultrafiltration and aerobic membrane bioreactor treatment systems for mechanical newsprint mill whitewater at 55 °C. Water Sci. Technol. 1998, 38, 307–314. [Google Scholar] [CrossRef]
- Argüello, M.A.; Álvarez, S.; Riera, F.A.; Alvarez, R. Enzymatic cleaning of inorganic ultrafiltration membranes used for whey protein fractionation. J. Memb. Sci. 2003, 216, 121–134. [Google Scholar] [CrossRef]
- Seib, M.; Berg, K.; Zitomer, D. Low energy anaerobic membrane bioreactor for municipal wastewater treatment. J. Membr. Sci. 2016, 514, 450–457. [Google Scholar] [CrossRef]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spanó, J.C.E.; Marchesan, M.A.; Pecora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Petrus, H.; Li, H.; Chen, V.; Norazman, N. Enzymatic cleaning of ultrafiltration membranes fouled by protein mixture solutions. J. Membr. Sci. 2008, 325, 783–792. [Google Scholar] [CrossRef]
- Puspitasari, V.L.; Rattier, M.; Le-Clech, P.; Chen, V. Performances of protease and amylase cleaning for microporous membranes used in wastewater applications. Desalin. Water Treat. 2010, 13, 441–449. [Google Scholar] [CrossRef] [Green Version]
Method/ Membrane Configuration | Affecting Factors | Drawbacks |
---|---|---|
Ultrasound Flat sheet Tubular | Ultrasound frequency. Lower ultrasound frequencies make cleaning more efficient than higher frequencies [32,33,34,35]. | Fail to provide a uniform distribution of the ultrasonic energy to the fouled membrane surface [29,36]. Damage to the ceramic membranes was observed when using high powers [37]. |
Ultrasound power intensity. Sonochemical effects (amount of bubbles, hydrodynamic turbulence) boost with the increase of ultrasound power intensity [32,35]. | ||
Temperature. The best conditions for effective cavitation were reported at 60–70 °C. When the temperature was decreased to 40 °C or raised to 85 °C, the cavitation efficiency decreased by half [29]. | ||
Electric field Flat sheetTubular | Zeta potential of a feed. Electrical field strength. The maximal efficiency (lowest fouling degree) is achieved when an electrical field strength is close to critical [38]. | Intensive corrosion or expensive corrosion-resistant electrodes [39]. Potential risk of electrocoating a membrane in hard water [40]. |
Backwashing Flat sheet Hollow fibre Tubular | Pressure. For effective particle removal, backwash pressure has to be higher than the membrane operating pressure [29]. | Intensive energy consumption [30,41]. Hard to ensure constant and uniform backflow through multichannel membranes [42]. |
Composition of backwash solution. Backwashing is more effective using deionized water, rather than permeate [41,43]. | ||
Backpulsing Flat Sheet Tubular | Amplitude. An increase in amplitude allows decreasing the cleaning time [29,44]. | |
Frequency. The short duration of back pulses is key for effective foulant removal [44]. |
Category | Mechanism | Common Chemicals | Reference |
---|---|---|---|
Alkalis | Dissolving organic and inorganic material, saponification of fats and oils, hydrolysis of proteins. | NaOH, KOH | [30,68,69] |
Acids | Solubilization and chelation of metal oxides, dissolution of scales. | HCl, H3PO4, HNO3, citric acid. | [21,30,64] |
Oxidants/Disinfectants | Disinfection, increase of hydrophilicity, oxidation of foulants. | NaOCl, free chlorine, H2O2, peroxyacetic acid | [31,70,71] |
Chelating agents | Forming complexes with metals in order to keep them in solution. | Citric acid, ethylenediamine-tetraacetic acid | [27,62,70] |
Surfactants | Increase surface wettability, lower surface tension, increase the solubility of foulants, emulsification, dispersion of foulants. | Surfactants, detergents (SDS, sodium dodecylsulfate) | [30,64,72] |
Enzymes | Split or hydrolyze protein–peptide bonds, disintegrating the protein. | Protease, lipase, commercial enzyme mixes | [21,73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruskevica, K.; Mezule, L. Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling. Membranes 2021, 11, 131. https://doi.org/10.3390/membranes11020131
Gruskevica K, Mezule L. Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling. Membranes. 2021; 11(2):131. https://doi.org/10.3390/membranes11020131
Chicago/Turabian StyleGruskevica, Kamila, and Linda Mezule. 2021. "Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling" Membranes 11, no. 2: 131. https://doi.org/10.3390/membranes11020131
APA StyleGruskevica, K., & Mezule, L. (2021). Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling. Membranes, 11(2), 131. https://doi.org/10.3390/membranes11020131