Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Lin, Y.-G.; Weng, H.-T.; Wei, Y.-H. Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts. Appl. Surf. Sci. 2018, 451, 198–206. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Wu, P.-H. Properties of solution-processed MgInZnO semiconductor thin films and photodetectors fabricated at a low temperature using UV-assisted thermal annealing. Ceram. Int. 2017, 43, 11874–11878. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Wu, P.-H. Incorporation of sol–gel-derived Mg into InZnO semiconductor thin films for metal–semiconductor–metal ultraviolet photodetectors. Jpn. J. Appl. Phys. 2017, 56, 03BA02. [Google Scholar] [CrossRef]
- Wang, I.-S.; Lin, Y.-T.; Huang, C.-H.; Lu, T.-F.; Lue, C.-E.; Yang, P.; Pijanswska, D.G.; Yang, C.-M.; Wang, J.-C.; Yu, J.-S.; et al. Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment. Nanoscale Res. Lett. 2012, 7, 179. [Google Scholar] [CrossRef]
- Chou, J.-C.; Chen, J.-S.; Huang, M.-S.; Liao, Y.-H.; Lai, C.-H.; Wu, T.-Y.; Yan, S.-J. The Characteristic Analysis of IGZO/Al pH Sensor and Glucose Biosensor in Static and Dynamic Measurements. IEEE Sens. J. 2016, 16, 8509–8516. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, Y.W.; Wang, C.H. The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys. 2020, 16, 102976. [Google Scholar] [CrossRef]
- Kumar, P.; Maikap, S.; Singh, K.; Chatterjee, S.; Chen, Y.-Y.; Cheng, H.-M.; Mahapatra, R.; Qiu, J.-T.; Yang, J.-R. Highly Reliable Label-Free Detection of Urea/Glucose and Sensing Mechanism Using SiO2 and CdSe-ZnS Nanoparticles in Electrolyte-Insulator-Semiconductor Structure. J. Electrochem. Soc. 2016, 163, B580–B587. [Google Scholar] [CrossRef]
- Kumar, P.; Maikap, S.; Qiu, J.T.; Jana, S.; Roy, A.; Singh, K.; Cheng, H.M.; Chang, M.T.; Mahapatra, R.; Chiu, H.C.; et al. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure. Nanoscale Res. Lett. 2016, 11, 434. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kao, C.H.; Chang, C.L.; Su, W.M.; Chen, Y.T.; Lu, C.C.; Lee, Y.S.; Hong, C.H.; Lin, C.Y.; Chen, H. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment. Sci. Rep. 2017, 7, 7185. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, F.; Fan, Z.; Gui, J. Improved photocatalytic hydrogen production property over Ni/NiO/N–TiO2−x heterojunction nanocomposite prepared by NH3 plasma treatment. J. Power Sources 2014, 250, 30–39. [Google Scholar] [CrossRef]
- Kang, D.H.; Kang, I.; Ryu, S.H.; Jang, J. Self-Aligned Coplanar a-IGZO TFTs and Application to High-Speed Circuits. IEEE Electron Device Lett. 2011, 32, 1385–1387. [Google Scholar] [CrossRef]
- Lai, C.; Lue, C.; Yang, C.; Jao, J.; Tai, C. New pH-sensitive TaOxNy membranes prepared by NH3 plasma surface treatment and nitrogen incorporated reactive sputtering. Sens. Actuators B Chem. 2018, 130, 77–81. [Google Scholar] [CrossRef]
- Kao, C.H.; Chang, C.W.; Chen, Y.T.; Su, W.M.; Lu, C.C.; Lin, C.Y.; Chen, H. Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Sci. Rep. 2017, 7, 2405. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.H.; Oh, S.; Nam, J.H.; Jang, H.Y.; Kim, Y.; Yamada, N.; Kobayashi, H.; Kim, S.-Y.; Lee, B.H.; et al. Al2O3-Induced Sub-Gap Doping on the IGZO Channel for the Detection of Infrared Light. ACS Appl. Electron. Mater. 2020, 2, 1478–1483. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Chen, K.L.; Lin, Y.H. NH3 Plasma-Treated Magnesium Doped Zinc Oxide in Biomedical Sensors with Electrolyte-Insulator-Semiconductor (EIS) Structure for Urea and Glucose Applications. Nanomaterials 2020, 10, 583. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, C.S.; Liu, Y.W. Comparison Between Performances of In2O3 and In2TiO5-Based EIS Biosensors Using Post Plasma CF4 Treatment Applied in Glucose and Urea Sensing. Sci. Rep. 2019, 9, 3078. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Luo, J.-D.; Chiou, C.-C.; Yang, C.-M.; Wang, C.-Y.; Chou, C.; Lai, C.-S. Detection of KRAS mutation by combination of polymerase chain reaction (PCR) and EIS sensor with new amino group functionalization. Sens. Actuators B Chem. 2013, 186, 374–379. [Google Scholar] [CrossRef]
- Nag, M.; Muller, R.; Steudel, S.; Smout, S.; Bhoolokam, A.; Myny, K.; Schols, S.; Genoe, J.; Cobb, B.; Kumar, A.; et al. Low-temperature formation of source–drain contacts in self-aligned amorphous oxide thin-film transistors. J. Inf. Disp. 2015, 16, 111–117. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, X.; Liang, T.; Zhang, L.; Zhang, S. Oxide Thin-Film Transistors With IMO and IGZO Stacked Active Layers for UV Detection. IEEE J. Electron Devices Soc. 2017, 5, 504–508. [Google Scholar] [CrossRef]
- Oh, S.-I.; Choi, G.; Hwang, H.; Lu, W.; Jang, J.-H. Hydrogenated IGZO Thin-Film Transistors Using High-Pressure Hydrogen Annealing. IEEE Trans. Electron Devices 2013, 60, 2537–2541. [Google Scholar] [CrossRef]
- Peng, H.; Chang, B.; Fu, H.; Yang, H.; Zhang, Y.; Zhou, X.; Lu, L.; Zhang, S. Top-Gate Amorphous Indium-Gallium-Zinc-OxideThin-Film Transistors With Magnesium Metallized Source/Drain Regions. IEEE Trans. Electron Devices 2020, 67, 1619–1624. [Google Scholar] [CrossRef]
- Kao, C.H.; Liu, C.S.; Lu, S.H.; Tsai, S.C.; Chan, W.L.; Lin, B.H.; Lin, C.F.; Chen, H.; Han, J. Multianalyte Mg-Doped InGaZnO Electrolyte-Insulator-Semiconductor Biosensors and Multiple Material Characterizations of Membrane Nanostructures. IEEE Sens. J. 2020, 20, 10653–10663. [Google Scholar] [CrossRef]
- Qian, S.-B.; Shao, Y.; Liu, W.-J.; Zhang, D.W.; Ding, S.-J. Erasing-Modes Dependent Performance of a-IGZO TFT Memory With Atomic-Layer-Deposited Ni Nanocrystal Charge Storage Layer. IEEE Trans. Electron Devices 2017, 64, 3023–3027. [Google Scholar] [CrossRef]
- Sangwook, K.; Jaechul, P.; Changjung, K.; Ihun, S.; Sunil, K.; Sungho, P.; Huaxiang, Y.; Hyung-Ik, L.; Eunha, L.; Youngsoo, P. Source/Drain Formation of Self-Aligned Top-Gate Amorphous GaInZnO Thin-Film Transistors by NH3 Plasma Treatment. IEEE Electron Device Lett. 2009, 30, 374–376. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.; Sokolovskij, R.; Sacco, L.; Zheng, H.; Ye, H.; Yu, H.; Fan, X.; Tian, H.; Ren, T.L.; et al. Ultra-High Sensitive NO2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS2/IGZO p-N Heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 40850–40859. [Google Scholar] [CrossRef]
- Bousse, L.; De Rooij, N.F.; Bergveld, P. Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Trans. Electron Devices 1983, 30, 1263–1270. [Google Scholar] [CrossRef]
- Fung, C.D.; Cheung, P.W.; Ko, W.H. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices 1986, 33, 8–18. [Google Scholar] [CrossRef]
- an Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B Chem. 1995, 24, 201–205. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, L.; Zhang, X.; Wu, Z.; Huan, S. A MgO nanoparticles composite matrix-based electrochemical biosensor for hydrogen peroxide with high sensitivity. Electroanalysis 2010, 22, 471–477. [Google Scholar] [CrossRef]
- Gall, D.; Shin, C.S.; Spila, T.; Odén, M. Growth of single-crystal CrN on MgO (001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties. J. Appl. Phys. 2002, 91, 3589–3597. [Google Scholar] [CrossRef]
- Habibah, Z.; Yusof, K.A.; Ismail, L.N. Sol-gel derived nano-magnesium oxide: Influence of drying temperature to the dielectric layer properties. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2013; Volume 46, p. 012006. [Google Scholar]
- Wang, D.; Huang, Y.; Huo, Z.; Chen, L. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim. Acta 2013, 107, 461–466. [Google Scholar] [CrossRef]
- Oldham, K.B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 2008, 613, 131–138. [Google Scholar] [CrossRef]
- Yang, C.-M.; Wang, J.-C.; Chiang, T.-W.; Lin, Y.-T.; Juan, T.-W.; Chen, T.-C.; Shih, M.-Y.; Lue, C.-E.; Lai, C.-S. Nano-IGZO layer for EGFET in pH sensing characteristics. In Proceedings of the 2013 IEEE 5th International Nanoelectronics Conference (INEC), Singapore, 2–4 January 2013; pp. 480–482. [Google Scholar]
- Jan, S.-S.; Chen, Y.-C.; Chou, J.-C.; Jan, P.-J.; Cheng, C.-C. Preparation and properties of hydrogen ion-sensitive field effect transistors with sol–gel-derived Mg-modified lead titanate gate. J. Non-Cryst. Solids 2003, 332, 11–19. [Google Scholar] [CrossRef]
- Quan, Z.; Liu, X.; Qi, Y.; Song, Z.; Qi, S.; Zhou, G.; Xu, X. Robust room temperature ferromagnetism and band gap tuning in nonmagnetic Mg doped ZnO films. Appl. Surf. Sci. 2017, 399, 751–757. [Google Scholar] [CrossRef]
Sample | Sensitivity | Linearity |
---|---|---|
IGZO w/o annealing | 39.08 mV/pH | 95.37% |
Mg-doped IGZO annealed at 500 °C | 56.51 mV/pH | 98.79% |
Mg-doped IGZO w/o annealing | 43.45 mV/pH | 99.234% |
Mg-doped IGZO annealed at 600 °C | 59.3 mV/pH | 99.128% |
IGZO NH3 plasma 3 min | 62.28 mV/pH | 99.45% |
Mg-doped IGZO NH3 plasma 3 min | 65.85 mV/pH | 99.03% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-H.; Liu, C.-S.; Chan, S.-M.; Kuo, C.-C.; Tsai, S.-C.; Lee, M.-L.; Chen, H. Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane. Membranes 2021, 11, 994. https://doi.org/10.3390/membranes11120994
Kao C-H, Liu C-S, Chan S-M, Kuo C-C, Tsai S-C, Lee M-L, Chen H. Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane. Membranes. 2021; 11(12):994. https://doi.org/10.3390/membranes11120994
Chicago/Turabian StyleKao, Chyuan-Haur, Chia-Shao Liu, Shih-Ming Chan, Chih-Chen Kuo, Shang-Che Tsai, Ming-Ling Lee, and Hsiang Chen. 2021. "Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane" Membranes 11, no. 12: 994. https://doi.org/10.3390/membranes11120994
APA StyleKao, C.-H., Liu, C.-S., Chan, S.-M., Kuo, C.-C., Tsai, S.-C., Lee, M.-L., & Chen, H. (2021). Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane. Membranes, 11(12), 994. https://doi.org/10.3390/membranes11120994