Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Lin, Y.-G.; Weng, H.-T.; Wei, Y.-H. Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts. Appl. Surf. Sci. 2018, 451, 198–206. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Wu, P.-H. Properties of solution-processed MgInZnO semiconductor thin films and photodetectors fabricated at a low temperature using UV-assisted thermal annealing. Ceram. Int. 2017, 43, 11874–11878. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Wu, P.-H. Incorporation of sol–gel-derived Mg into InZnO semiconductor thin films for metal–semiconductor–metal ultraviolet photodetectors. Jpn. J. Appl. Phys. 2017, 56, 03BA02. [Google Scholar] [CrossRef]
- Wang, I.-S.; Lin, Y.-T.; Huang, C.-H.; Lu, T.-F.; Lue, C.-E.; Yang, P.; Pijanswska, D.G.; Yang, C.-M.; Wang, J.-C.; Yu, J.-S.; et al. Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment. Nanoscale Res. Lett. 2012, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.-C.; Chen, J.-S.; Huang, M.-S.; Liao, Y.-H.; Lai, C.-H.; Wu, T.-Y.; Yan, S.-J. The Characteristic Analysis of IGZO/Al pH Sensor and Glucose Biosensor in Static and Dynamic Measurements. IEEE Sens. J. 2016, 16, 8509–8516. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, Y.W.; Wang, C.H. The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys. 2020, 16, 102976. [Google Scholar] [CrossRef]
- Kumar, P.; Maikap, S.; Singh, K.; Chatterjee, S.; Chen, Y.-Y.; Cheng, H.-M.; Mahapatra, R.; Qiu, J.-T.; Yang, J.-R. Highly Reliable Label-Free Detection of Urea/Glucose and Sensing Mechanism Using SiO2 and CdSe-ZnS Nanoparticles in Electrolyte-Insulator-Semiconductor Structure. J. Electrochem. Soc. 2016, 163, B580–B587. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Maikap, S.; Qiu, J.T.; Jana, S.; Roy, A.; Singh, K.; Cheng, H.M.; Chang, M.T.; Mahapatra, R.; Chiu, H.C.; et al. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure. Nanoscale Res. Lett. 2016, 11, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.H.; Chang, C.L.; Su, W.M.; Chen, Y.T.; Lu, C.C.; Lee, Y.S.; Hong, C.H.; Lin, C.Y.; Chen, H. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment. Sci. Rep. 2017, 7, 7185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Li, F.; Fan, Z.; Gui, J. Improved photocatalytic hydrogen production property over Ni/NiO/N–TiO2−x heterojunction nanocomposite prepared by NH3 plasma treatment. J. Power Sources 2014, 250, 30–39. [Google Scholar] [CrossRef]
- Kang, D.H.; Kang, I.; Ryu, S.H.; Jang, J. Self-Aligned Coplanar a-IGZO TFTs and Application to High-Speed Circuits. IEEE Electron Device Lett. 2011, 32, 1385–1387. [Google Scholar] [CrossRef]
- Lai, C.; Lue, C.; Yang, C.; Jao, J.; Tai, C. New pH-sensitive TaOxNy membranes prepared by NH3 plasma surface treatment and nitrogen incorporated reactive sputtering. Sens. Actuators B Chem. 2018, 130, 77–81. [Google Scholar] [CrossRef]
- Kao, C.H.; Chang, C.W.; Chen, Y.T.; Su, W.M.; Lu, C.C.; Lin, C.Y.; Chen, H. Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Sci. Rep. 2017, 7, 2405. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.H.; Oh, S.; Nam, J.H.; Jang, H.Y.; Kim, Y.; Yamada, N.; Kobayashi, H.; Kim, S.-Y.; Lee, B.H.; et al. Al2O3-Induced Sub-Gap Doping on the IGZO Channel for the Detection of Infrared Light. ACS Appl. Electron. Mater. 2020, 2, 1478–1483. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Chen, K.L.; Lin, Y.H. NH3 Plasma-Treated Magnesium Doped Zinc Oxide in Biomedical Sensors with Electrolyte-Insulator-Semiconductor (EIS) Structure for Urea and Glucose Applications. Nanomaterials 2020, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, C.S.; Liu, Y.W. Comparison Between Performances of In2O3 and In2TiO5-Based EIS Biosensors Using Post Plasma CF4 Treatment Applied in Glucose and Urea Sensing. Sci. Rep. 2019, 9, 3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-T.; Luo, J.-D.; Chiou, C.-C.; Yang, C.-M.; Wang, C.-Y.; Chou, C.; Lai, C.-S. Detection of KRAS mutation by combination of polymerase chain reaction (PCR) and EIS sensor with new amino group functionalization. Sens. Actuators B Chem. 2013, 186, 374–379. [Google Scholar] [CrossRef]
- Nag, M.; Muller, R.; Steudel, S.; Smout, S.; Bhoolokam, A.; Myny, K.; Schols, S.; Genoe, J.; Cobb, B.; Kumar, A.; et al. Low-temperature formation of source–drain contacts in self-aligned amorphous oxide thin-film transistors. J. Inf. Disp. 2015, 16, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhou, X.; Liang, T.; Zhang, L.; Zhang, S. Oxide Thin-Film Transistors With IMO and IGZO Stacked Active Layers for UV Detection. IEEE J. Electron Devices Soc. 2017, 5, 504–508. [Google Scholar] [CrossRef]
- Oh, S.-I.; Choi, G.; Hwang, H.; Lu, W.; Jang, J.-H. Hydrogenated IGZO Thin-Film Transistors Using High-Pressure Hydrogen Annealing. IEEE Trans. Electron Devices 2013, 60, 2537–2541. [Google Scholar] [CrossRef]
- Peng, H.; Chang, B.; Fu, H.; Yang, H.; Zhang, Y.; Zhou, X.; Lu, L.; Zhang, S. Top-Gate Amorphous Indium-Gallium-Zinc-OxideThin-Film Transistors With Magnesium Metallized Source/Drain Regions. IEEE Trans. Electron Devices 2020, 67, 1619–1624. [Google Scholar] [CrossRef]
- Kao, C.H.; Liu, C.S.; Lu, S.H.; Tsai, S.C.; Chan, W.L.; Lin, B.H.; Lin, C.F.; Chen, H.; Han, J. Multianalyte Mg-Doped InGaZnO Electrolyte-Insulator-Semiconductor Biosensors and Multiple Material Characterizations of Membrane Nanostructures. IEEE Sens. J. 2020, 20, 10653–10663. [Google Scholar] [CrossRef]
- Qian, S.-B.; Shao, Y.; Liu, W.-J.; Zhang, D.W.; Ding, S.-J. Erasing-Modes Dependent Performance of a-IGZO TFT Memory With Atomic-Layer-Deposited Ni Nanocrystal Charge Storage Layer. IEEE Trans. Electron Devices 2017, 64, 3023–3027. [Google Scholar] [CrossRef]
- Sangwook, K.; Jaechul, P.; Changjung, K.; Ihun, S.; Sunil, K.; Sungho, P.; Huaxiang, Y.; Hyung-Ik, L.; Eunha, L.; Youngsoo, P. Source/Drain Formation of Self-Aligned Top-Gate Amorphous GaInZnO Thin-Film Transistors by NH3 Plasma Treatment. IEEE Electron Device Lett. 2009, 30, 374–376. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.; Sokolovskij, R.; Sacco, L.; Zheng, H.; Ye, H.; Yu, H.; Fan, X.; Tian, H.; Ren, T.L.; et al. Ultra-High Sensitive NO2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS2/IGZO p-N Heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 40850–40859. [Google Scholar] [CrossRef]
- Bousse, L.; De Rooij, N.F.; Bergveld, P. Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Trans. Electron Devices 1983, 30, 1263–1270. [Google Scholar] [CrossRef]
- Fung, C.D.; Cheung, P.W.; Ko, W.H. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices 1986, 33, 8–18. [Google Scholar] [CrossRef]
- an Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B Chem. 1995, 24, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zhang, L.; Zhang, X.; Wu, Z.; Huan, S. A MgO nanoparticles composite matrix-based electrochemical biosensor for hydrogen peroxide with high sensitivity. Electroanalysis 2010, 22, 471–477. [Google Scholar] [CrossRef]
- Gall, D.; Shin, C.S.; Spila, T.; Odén, M. Growth of single-crystal CrN on MgO (001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties. J. Appl. Phys. 2002, 91, 3589–3597. [Google Scholar] [CrossRef] [Green Version]
- Habibah, Z.; Yusof, K.A.; Ismail, L.N. Sol-gel derived nano-magnesium oxide: Influence of drying temperature to the dielectric layer properties. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2013; Volume 46, p. 012006. [Google Scholar]
- Wang, D.; Huang, Y.; Huo, Z.; Chen, L. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim. Acta 2013, 107, 461–466. [Google Scholar] [CrossRef]
- Oldham, K.B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 2008, 613, 131–138. [Google Scholar] [CrossRef]
- Yang, C.-M.; Wang, J.-C.; Chiang, T.-W.; Lin, Y.-T.; Juan, T.-W.; Chen, T.-C.; Shih, M.-Y.; Lue, C.-E.; Lai, C.-S. Nano-IGZO layer for EGFET in pH sensing characteristics. In Proceedings of the 2013 IEEE 5th International Nanoelectronics Conference (INEC), Singapore, 2–4 January 2013; pp. 480–482. [Google Scholar]
- Jan, S.-S.; Chen, Y.-C.; Chou, J.-C.; Jan, P.-J.; Cheng, C.-C. Preparation and properties of hydrogen ion-sensitive field effect transistors with sol–gel-derived Mg-modified lead titanate gate. J. Non-Cryst. Solids 2003, 332, 11–19. [Google Scholar] [CrossRef]
- Quan, Z.; Liu, X.; Qi, Y.; Song, Z.; Qi, S.; Zhou, G.; Xu, X. Robust room temperature ferromagnetism and band gap tuning in nonmagnetic Mg doped ZnO films. Appl. Surf. Sci. 2017, 399, 751–757. [Google Scholar] [CrossRef]
Sample | Sensitivity | Linearity |
---|---|---|
IGZO w/o annealing | 39.08 mV/pH | 95.37% |
Mg-doped IGZO annealed at 500 °C | 56.51 mV/pH | 98.79% |
Mg-doped IGZO w/o annealing | 43.45 mV/pH | 99.234% |
Mg-doped IGZO annealed at 600 °C | 59.3 mV/pH | 99.128% |
IGZO NH3 plasma 3 min | 62.28 mV/pH | 99.45% |
Mg-doped IGZO NH3 plasma 3 min | 65.85 mV/pH | 99.03% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-H.; Liu, C.-S.; Chan, S.-M.; Kuo, C.-C.; Tsai, S.-C.; Lee, M.-L.; Chen, H. Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane. Membranes 2021, 11, 994. https://doi.org/10.3390/membranes11120994
Kao C-H, Liu C-S, Chan S-M, Kuo C-C, Tsai S-C, Lee M-L, Chen H. Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane. Membranes. 2021; 11(12):994. https://doi.org/10.3390/membranes11120994
Chicago/Turabian StyleKao, Chyuan-Haur, Chia-Shao Liu, Shih-Ming Chan, Chih-Chen Kuo, Shang-Che Tsai, Ming-Ling Lee, and Hsiang Chen. 2021. "Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane" Membranes 11, no. 12: 994. https://doi.org/10.3390/membranes11120994
APA StyleKao, C. -H., Liu, C. -S., Chan, S. -M., Kuo, C. -C., Tsai, S. -C., Lee, M. -L., & Chen, H. (2021). Effects of NH3 Plasma and Mg Doping on InGaZnO pH Sensing Membrane. Membranes, 11(12), 994. https://doi.org/10.3390/membranes11120994