Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Fabrication
2.2. Physico-Chemical Characterization
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Energy-Dispersive Spectroscopy (EDS)
2.2.3. Surface Wetting
2.2.4. Tensile Testing
2.2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.6. X-ray Diffraction Analysis (XRD)
2.3. Biomedical Studies
2.3.1. Antibacterial Activity
2.3.2. In Vivo Contaminated Full-Thickness Wound Healing
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brocke, T.; Barr, J. The History of Wound Healing. Surg. Clin. N. Am. 2020, 100, 787–806. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naskar, A.; Kim, K.-S. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020, 12, 499. [Google Scholar] [CrossRef]
- Mousavi, S.; Zarei, M.; Hashemi, S.; Ramakrishna, S.; Chiang, W.-H.; Lai, C.; Gholami, A.; Omidifar, N.; Shokripour, M. Asymmetric Membranes: A Potential Scaffold for Wound Healing Applications. Symmetry 2020, 12, 1100. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M.; Yu, D.-G. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes 2021, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Bombin, A.D.J.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 110994. [Google Scholar] [CrossRef] [PubMed]
- Afsharian, Y.P.; Rahimnejad, M. Bioactive electrospun scaffolds for wound healing applications: A comprehensive review. Polym. Test. 2021, 93, 106952. [Google Scholar] [CrossRef]
- Mokhtari, F.; Azimi, B.; Salehi, M.; Hashemikia, S.; Danti, S. Recent advances of polymer-based piezoelectric composites for biomedical applications. J. Mech. Behav. Biomed. Mater. 2021, 122, 104669. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Liu, Z.; Hu, M.; Wang, C.; Zhang, X.; Shi, B.; Fan, Y.; Cui, Y.; Li, Z.; Ren, K. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 2018, 43, 63–71. [Google Scholar] [CrossRef]
- Tandon, B.; Magaz, A.; Balint, R.; Blaker, J.; Cartmell, S.H. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv. Drug Deliv. Rev. 2018, 129, 148–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018, 81, 144–162. [Google Scholar] [CrossRef]
- Nakhmanson, S.M.; Nardelli, M.B.; Bernholc, J. Ab InitioStudies of Polarization and Piezoelectricity in Vinylidene Fluoride and BN-Based Polymers. Phys. Rev. Lett. 2004, 92, 115504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakhmanson, S.M.; Nardelli, M.B.; Bernholc, J. Collective polarization effects inβ-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene. Phys. Rev. B 2005, 72, 115210. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Hashizume, Y.; Nakajima, T.; Okamura, S. Polarization switching characteristics of vinylidene fluoride/tefrafluoroethylene copolymer thin films. Jpn. J. Appl. Phys. 2015, 54, 10NA09. [Google Scholar] [CrossRef]
- Ameduri, B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolbasov, E.N.; Popkov, D.; Kononovich, N.A.; Gorbach, E.N.; Khlusov, I.A.; Golovkin, A.S.; Stankevich, K.S.; Ignatov, V.P.; Bouznik, V.M.; Anissimov, Y.; et al. Flexible intramedullary nails for limb lengthening: A comprehensive comparative study of three nails types. Biomed. Mater. 2019, 14, 025005. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Drioli, E.; Lee, Y.M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone)—A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym. Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef]
- Ann, L.C.; Mahmud, S.; Bakhori, S.K.M.; Sirelkhatim, A.; Mohamad, D.; Hasan, H.; Seeni, A.; Rahman, R.A. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 2014, 40, 2993–3001. [Google Scholar] [CrossRef]
- Singh, T.A.; Sharma, A.; Tejwan, N.; Ghosh, N.; Das, J.; Sil, P.C. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid Interface Sci. 2021, 295, 102495. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Kumar, B. A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J. Alloys Compd. 2020, 816, 152491. [Google Scholar] [CrossRef]
- Gavrilenko, E.A.; Goncharova, D.A.; Lapin, I.N.; Nemoykina, A.L.; Svetlichnyi, V.A.; Aljulaih, A.A.; Mintcheva, N.; Kulinich, S.A. Comparative Study of Physicochemical and Antibacterial Properties of ZnO Nanoparticles Prepared by Laser Ablation of Zn Target in Water and Air. Materials 2019, 12, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoefer, D.; Hammer, T.R. Antimicrobial Active Clothes Display No Adverse Effects on the Ecological Balance of the Healthy Human Skin Microflora. ISRN Dermatol. 2011, 2011, 369603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janet, C.G.; Barbee, R.W.; Bielitzki, J.T.; Clayton, L.A.; Donovan, J.C.; Hendriksen, C.F.M.; Kohn, D.F.; Lipman, N.S.; Locke, P.A.; Melcher, J.; et al. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2011; ISBN 0-919087-18-3. [Google Scholar]
- Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126. [Google Scholar] [CrossRef]
- Kobayashi, M.; Tashiro, K.; Tadokoro, H. Molecular Vibrations of Three Crystal Forms of Poly(vinylidene fluoride). Macromolecules 1975, 8, 158–171. [Google Scholar] [CrossRef]
- Tashiro, K.; Abe, Y.; Kobayashi, M. Computer simulation of structure and ferroelectric phase transition of vinylidene fluoride copolymers (1) vdf content dependence of the crystal structure. Ferroelectrics 1995, 171, 281–297. [Google Scholar] [CrossRef]
- Kochervinskii, V.V. The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity. Russ. Chem. Rev. 1994, 63, 367–371. [Google Scholar] [CrossRef]
- Safo, I.A.; Werheid, M.; Dosche, C.; Oezaslan, M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 2019, 1, 3095–3106. [Google Scholar] [CrossRef] [Green Version]
- Abdelghany, A.; Abdelrazek, E.M.; Badr, S.I.; Morsi, M.A. Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: Materials for electrochemical and optical applications. Mater. Des. 2016, 97, 532–543. [Google Scholar] [CrossRef]
- Goncharova, D.A.; Bolbasov, E.N.; Nemoykina, A.L.; Aljulaih, A.A.; Tverdokhlebova, T.S.; Kulinich, S.A.; Svetlichnyi, V.A. Structure and Properties of Biodegradable PLLA/ZnO Composite Membrane Produced via Electrospinning. Materials 2020, 14, 2. [Google Scholar] [CrossRef]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.-M.; Le, K.H.T.; Giannitelli, S.M.; Lee, Y.J.; Rainer, A.; Trombetta, M. Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J. Mater. Sci. Mater. Med. 2013, 24, 1425–1442. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.; Richardson, S.C.W. Endocytosis and Intracellular Trafficking as Gateways for Nanomedicine Delivery: Opportunities and Challenges. Mol. Pharm. 2012, 9, 2380–2402. [Google Scholar] [CrossRef]
- Burnett, C.L. PVP (Polyvinylpyrrolidone). Int. J. Toxicol. 2017, 36, 50S–51S. [Google Scholar] [CrossRef] [Green Version]
- Tverdokhlebova, T.S.; Bolbasov, E.N.; Bouznik, V.M. Composition Polymeric Membranes Based on the VDF-TeFE Copolymer Formed by Electrospinning. IOP Conf. Ser. Mater. Sci. Eng. 2020, 731, 012022. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, E.O.; Fernandes, M.M.; Padrão, J.; Nicolau, A.; Marqués-Marchán, J.; Asenjo, A.; Gama, F.M.; Ribeiro, C.; Lanceros-Mendez, S. Tailoring Bacteria Response by Piezoelectric Stimulation. ACS Appl. Mater. Interfaces 2019, 11, 27297–27305. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.-F.; Li, Z.-S.; Dong, S.-W.; Chen, W.-J.; Deng, L.; Wang, Y.-F.; Ying, D.-J. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf. B Biointerfaces 2012, 96, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, S.; Miyata, S. Effects of crystal structure on piezoelectric and ferroelectric properties of copoly(vinylidenefluoride-tetrafluoroethylene). J. Appl. Phys. 1985, 57, 906–910. [Google Scholar] [CrossRef]
- Hicks, J.C.; Jones, T.E.; Logan, J.C. Ferroelectric properties of poly(vinylidene fluoride-tetrafluoroethylene). J. Appl. Phys. 1978, 49, 6092–6096. [Google Scholar] [CrossRef]
PVP Content, % | Dynamic Viscosity, 10−3 Pa × s | Conductivity, µS/cm | Mean Fiber Diameter, µm | Tensile Strength, MPa | Elongation, % |
---|---|---|---|---|---|
0 | 51.9 ± 4.3 | 43.5 ± 1.0 | 0.36 ± 0.09 | 13.4 ± 0.8 | 70.0 ± 6.8 |
5 | 60.3 ± 2.5 | 38.2 ± 0.6 | 0.47 ± 0.11 | 10.9 ± 0.7 | 42.6 ± 4.7 |
10 | 52.8 ± 3.9 | 33.9 ± 0.7 | 0.41 ± 0.12 | 8.6 ± 1.1 | 59.9 ± 6.4 |
20 | 28.0 ± 1.5 | 32.8 ± 0.5 | 0.40 ± 0.08 | 9.2 ± 0.4 | 41.0 ± 3.4 |
40 | 6.3 ± 0.4 | 34.5 ± 0.5 | 0.32 ± 0.09 | 6.8 ± 0.7 | 36.8 ± 6.6 |
PVP Content, % | C | F | O | N | Zn | F/C | F/O |
---|---|---|---|---|---|---|---|
0 | 53.1 ± 1.5 | 41.3 ± 1.7 | 3.1 ± 0.2 | - | 2.6 ± 0.1 | 0.80 ± 0.05 | 13.56 ± 1.22 |
5 | 56.6 ± 2.5 | 36.4 ± 2.8 | 3.7 ± 0.1 | 0.7 ± 0.2 | 2.6 ± 0.1 | 0.64 ± 0.08 | 9.84 ± 0.98 |
10 | 59.9 ± 2.1 | 33.0 ± 2.3 | 4.1 ± 0.1 | 1.4 ± 0.1 | 2.5 ± 0.1 | 0.56 ± 0.06 | 8.10 ± 0.61 |
20 | 60.3 ± 0.4 | 29.1 ± 0.6 | 5.3 ± 0.2 | 2.7 ± 0.1 | 2.5 ± 0.1 | 0.48 ± 0.01 | 5.50 ± 0.29 |
40 | 66.6 ± 1.8 | 17.8 ± 1.9 | 7.4 ± 0.1 | 5.7 ± 0.2 | 2.5 ± 0.1 | 0.27 ± 0.04 | 2.42 ± 0.27 |
PVP Content, % | Crystal Size, nm | |
---|---|---|
β-Phase VDF-TeFE | ZnO | |
0 | 10.5 ± 1.2 | 20.2 ± 1.7 |
5 | 9.9 ± 0.9 | 20.9 ± 1.7 |
10 | 9.1 ± 0.7 | 20.9 ± 2.0 |
20 | 8.4± 1.1 | 20.4 ± 2.1 |
40 | 7.2 ± 1.5 | 20.5 ± 1.6 |
Sample | Incubation Time, h | Number of Microorganisms, CFU/mL | Growth Rate on a Control Sample | Growth Rate on Hybrid Samples | Antibacterial Activity |
---|---|---|---|---|---|
PVP 0% | 0 | 1.67 × 104 ± 0.15 | 3.071 | 2.74 | 0.33 |
24 | 2.00 × 107 ± 0.50 | ||||
PVP 5% | 0 | 1.40 × 104 ± 0.10 | 2.82 | 0.25 | |
24 | 9.17 × 106 ± 0.29 | ||||
PVP 10% | 0 | 1.43 × 104 ± 0.40 | 2.04 | 1.03 | |
24 | 1.53 × 106 ± 0.06 | ||||
PVP 20% | 0 | 1.60 × 104 ± 0.17 | 1.09 | 1.98 | |
24 | 1.97 × 105 ± 0.06 | ||||
PVP 40% | 0 | 1.67 × 104 ± 0.29 | 0.48 | 2.60 | |
24 | 5.00 × 104 ± 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukiev, I.V.; Antipina, L.S.; Goreninskii, S.I.; Tverdokhlebova, T.S.; Vasilchenko, D.V.; Nemoykina, A.L.; Goncharova, D.A.; Svetlichnyi, V.A.; Dambaev, G.T.; Bouznik, V.M.; et al. Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing. Membranes 2021, 11, 986. https://doi.org/10.3390/membranes11120986
Lukiev IV, Antipina LS, Goreninskii SI, Tverdokhlebova TS, Vasilchenko DV, Nemoykina AL, Goncharova DA, Svetlichnyi VA, Dambaev GT, Bouznik VM, et al. Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing. Membranes. 2021; 11(12):986. https://doi.org/10.3390/membranes11120986
Chicago/Turabian StyleLukiev, Ivan V., Ludmila S. Antipina, Semen I. Goreninskii, Tamara S. Tverdokhlebova, Dmitry V. Vasilchenko, Anna L. Nemoykina, Daria A. Goncharova, Valery A. Svetlichnyi, Georgiy T. Dambaev, Vyacheslav M. Bouznik, and et al. 2021. "Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing" Membranes 11, no. 12: 986. https://doi.org/10.3390/membranes11120986
APA StyleLukiev, I. V., Antipina, L. S., Goreninskii, S. I., Tverdokhlebova, T. S., Vasilchenko, D. V., Nemoykina, A. L., Goncharova, D. A., Svetlichnyi, V. A., Dambaev, G. T., Bouznik, V. M., & Bolbasov, E. N. (2021). Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing. Membranes, 11(12), 986. https://doi.org/10.3390/membranes11120986