Reverse Osmosis Treatment of Wastewater for Reuse as Process Water—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculations
2.2. SEM Imaging
3. Results and Discussion
3.1. Physico-Chemical Analyses
3.2. Pretreatment with Precoat Filtration
3.3. Filtration with a Reverse Osmosis Membrane
3.3.1. Chemical Analyses after RO
3.3.2. Membrane Fouling Studies
3.3.3. Membrane Cleaning
3.3.4. Process Scheme
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Alumina particle size effect on H2 production from ammonia decomposition by DBD plasma. Energy Rep. 2020, 6, 25–30. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Ghorbani-Choghamarani, A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J. Ind. Eng. Chem. 2021, 97, 1–78. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Zhao, P.; Peterson, K.; Shvarzman, A.; Gitarts, A. Evaluation of mortar produced with boiler blowdown brine. Constr. Build. Mater. 2021, 278, 122459. [Google Scholar] [CrossRef]
- Pourabdollah, K. Fouling formation and under deposit corrosion of boiler firetubes. J. Environ. Chem. Eng. 2021, 9, 104552. [Google Scholar] [CrossRef]
- Taqvi, S.A.A.; Sohail, M.; Uddin, F. Utilization of Ion-Exchange Technology for Boiler Feed Water Production-Design and Testing. Chem. Eng. 2016, 1, 26–35. [Google Scholar]
- Manikandan, S.; Subbaiya, R.; Saravanan, M.; Ponraj, M.; Selvam, M.; Pugazhendhi, A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 2021, 132867. [Google Scholar] [CrossRef]
- Gu, B.; Xu, X.X.; Adjiman, C.S. A predictive model for spiral wound reverse oomosis modules: The effect of winding geometry and accurate geometric details. Comput. Chem. Eng. 2017, 96, 248–265. [Google Scholar] [CrossRef] [Green Version]
- Schwinge, J.; Neal, P.R.; Wiley, D.E.; Fletcher, D.F.; Fane, A.G. Spiral wound modules and spacers: Review and analysis. J. Membr. Sci. 2004, 242, 129–153. [Google Scholar] [CrossRef]
- Ruiz-Garcia, A.; Pestana, I.N. Feed spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spiral-Wound Membrane Modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Cai, Y.H.; Galili, N.; Gelman, M.; Gilron, J. Evaluating the impact of pretreatment process on fouling of reverse osmosis membrane by secondary wastewater. J. Membr. Sci. 2021, 623, 119054. [Google Scholar] [CrossRef]
- Koo, C.H.; Mohammad, A.W.; Suja, F. Recycling of oleochemical wastewater for boiler feed water using rverse osmosis membranes—A case study. Desalination 2011, 271, 178–186. [Google Scholar] [CrossRef]
- Amma, L.V.; Ashraf, F. Brine Management in Reverse osmosis Desalination: A UAE Perspective. In Proceedings of the Advances in Science and Engineering Technology, Dubai, United Arab Emirates, 4 February–9 April 2020. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Wefers, K.; Misra, C. Oxides and Hydroxides of Aluminum. V: Alcoa Technical Paper; Alcoa Laboratories: Pittsburgh, PA, USA, 1987. [Google Scholar]
- Zhang, C.; Cheng, L.; Zhang, M.; Long, Z.; Meng, F.; Lin, H. Robust and durable transparent superhydrophobic boehmite (γ-AlOOH) film by a simple hydrothermal method. Ceram. Int. 2021, 47, 11694–11701. [Google Scholar] [CrossRef]
- Regulation, Regulation on the Emission of Substances and Heat from the Discharge of Wastewater from Municipal Watertreatment Plant, Official Gazette of Republic of Slovenia, No 45/07,63/09, 105/2010. 2007. Available online: https://leap.unep.org/countries/si/national-legislation/regulation-emission-substances-and-heat-discharge-waste-water (accessed on 2 December 2021).
- Kim, D.H.; Lee, C.; Nguyen, T.T.; Adha, R.S.; Kim, C.; Ahn, S.J.; Son, H.; Kim, S. Insight into fouling potential analysis of a pilot-scale pressure-assisted forward osmosis plan for diluted seawater reverse osmosis desalination. J. Ind. Eng. Chem. 2021, 98, 237–246. [Google Scholar] [CrossRef]
- Rani, S.R.S.; Kumar, V. Insight on appplications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Stud. Chem. Environ. Eng. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Perlite toxicology and epidemiology—A review. Inhal. Toxicol. 2014, 26, 259–270. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Koocheki, S. Application of Taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element. Chem. Eng. J. 2006, 119, 37–44. [Google Scholar] [CrossRef]
- Kosutic, K.; Dolar, D.; Kunst, B. On experimental parameters characterizing the reverse osmosis and nanofiltration membranes’ active layer. J. Membr. Sci. 2006, 282, 109–114. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Lyu, G.; Ma, L.; Zhang, W. Multi-material circulation optimization of the calcification-carbonation process based on material balance and phase transformation for cleaner production of alumina. J. Clean. Prod. 2021, 290, 125828. [Google Scholar] [CrossRef]
- Shin, C.; Szcuka, A.; Jiang, R.; Mitch, W.A.; Criddle, C.S. Optimization of reverse osmosis operational conditions too maximize ammonia removal from the effluent of an anaerobic membrane bioreactor. Environ. Sci. Water Res. Technol. 2021, 7, 739–747. [Google Scholar] [CrossRef]
- Harif, T.; Elifantz, H.; Margalit, E.; Herzberg, M.; Lichi, T.; Minz, D. The effect of pre-treatment on biofouling of BWRO membranes: A filed study. Desalination Water Treat. 2011, 31, 151–163. [Google Scholar] [CrossRef]
- Papapetrou, M.; Cipollina, A.; La Commare, U.; Micale, G.; Zaragoza, G.; Kosmadakis, G. Assessment of methodologies and data used to calculate desalination costs. Desalination 2017, 419, 8–19. [Google Scholar] [CrossRef]
Parameter | FILMTEC XLE-2521 | ESPA-2521 |
---|---|---|
Producer | DuPont-Filmtec (Germany) | Hydranautics, Nitto (UK) |
Pmax | 41 bar | 22 bar |
Tmax | 45 °C | 45 °C |
pH | 2–11 | 2–10 |
Material/Type | Spiral wound composite polyamide | Spiral wound composite polyamide |
Parameter | Standard Method | Apparatus |
---|---|---|
T (°C) | ISO 10523 | Thermometer |
pH | ISO 10523 | pH-meter, MA 5740 |
A (436 nm) | SIST EN ISO 7887 | Spectrophotometer Carry 100 |
κ (mS/cm) | EN 27888 | Conductivity-meter |
COD (g/L O2) | ISO 6060 | Digestion, Titration |
SS | ISO 38409-H9-2 | Imhoff funnel |
Metals | ISO 17294-2 | ICP-MS Agilent 7700x |
Ions (Cl, SO4, NO3) | ISO 10304-1 | IC Metrohm IC 761 |
Phosphorus | ISO 6878 | Spectrophotometer Carry 100 |
Silicium dioxide | SM4500-SiO2C | Spectrophotometer Carry 100 |
Parameter | MAC (mg/L) | c (WW1) (mg/L) | c (WW2) (mg/L) | c (WW3) (mg/L) |
---|---|---|---|---|
Al | 3 | 8.41 | 33.03 | 1.13 |
SiO2 | 250 | 0.74 | 2.86 | 40.1 |
Na | 200 | 152 | 245 | 166 |
Cu | 0.5 | 0.01 | 0.01 | 0.01 |
Cr | 0.5 | 0.08 | 0.006 | 0.003 |
Ti | 1 | 0.001 | 0.001 | 0.001 |
Fe | 2 | <0.1 | <0.1 | 0.17 |
Zn | 2 | <0.01 | 0.02 | 0.14 |
Ni | 0.5 | <0.001 | <0.001 | 0.003 |
Mg | 10 | 1.7 | 0.1 | 0.3 |
N-NH3 | 10 | 21.1 | 0.06 | 0.2 |
N-NO3 | 20 | 11 | 9.2 | 9.3 |
SO4 | 2000 | 22.7 | 15.6 | 15.7 |
PO4 | 1 | <0.05 | 0.08 | 1.03 |
Cl | 250 | 21 | 16 | 203 |
TOC | 30 | 8 | 9 | 7 |
SS | 3 | 9 | 11 | 0.1 |
Parameter | MAC (mg/L) | c (mixWW) (mg/L) |
---|---|---|
Al | 3 | 9.02 |
SiO2 | 250 | 15 |
Na | 200 | 229 |
Cu | 0.5 | 0.01 |
Cr | 0.5 | 0.08 |
Ti | 1 | 0.001 |
Fe | 2 | <0.1 |
Zn | 2 | <0.01 |
Ni | 0.5 | <0.001 |
Mg | 10 | 1.6 |
N-NH3 | 10 | 1.1 |
N-NO3 | 20 | 10 |
SO4 | 2000 | 24 |
PO4 | 1 | <0.05 |
Cl | 250 | 255 |
TOC | 30 | 8 |
SS | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonič, M. Reverse Osmosis Treatment of Wastewater for Reuse as Process Water—A Case Study. Membranes 2021, 11, 976. https://doi.org/10.3390/membranes11120976
Simonič M. Reverse Osmosis Treatment of Wastewater for Reuse as Process Water—A Case Study. Membranes. 2021; 11(12):976. https://doi.org/10.3390/membranes11120976
Chicago/Turabian StyleSimonič, Marjana. 2021. "Reverse Osmosis Treatment of Wastewater for Reuse as Process Water—A Case Study" Membranes 11, no. 12: 976. https://doi.org/10.3390/membranes11120976