Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data Processing
2.2. Artificial Neural Network Model
2.3. Response Surface Methodology
3. Results
3.1. Neural Network Model Selection and Performance
3.2. Neural Network Sensitivity Analysis
3.3. Application of Response Surface Methodology
4. Conclusions
- A high-performance ANN model was established using the published study with an overall R2 of 0.98036, which was validated and tested with the help of the experimental data.
- The weights of the ANN model were analyzed to investigate the sensitivity analysis of the model. The osmotic pressure difference, FS velocity, and DS velocity were found to be the highest and almost equally important operating conditions, which has an effect on the membrane flux.
- The RSM model (R2 = 0.9408) was used to optimize and further study the impact of the variables in terms of positive or negative influence on the membrane flux. The increase in osmotic pressure difference and FS velocity were always found to have a positive impact on the membrane flux, while the other variables had a mixed influence. The highest membrane flux (55 LMH) based on the response surface plots was obtained for the case of 25 bar osmotic pressure difference, 29 cm/s DS velocity, 20 cm/s FS velocity, 26 °C of both FS and DS temperature.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qasim, M.; Darwish, N.A.; Sarp, S.; Hilal, N. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination 2015, 374, 47–69. [Google Scholar] [CrossRef]
- Qin, J.J.; Chen, S.; Oo, M.H.; Kekre, K.A.; Cornelissen, E.R.; Ruiken, C.J. Experimental studies and modeling on concentration polarization in forward osmosis. Water Sci. Technol. 2010, 61, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Aydiner, C. A model-based analysis of water transport dynamics and fouling behaviors of osmotic membrane. Chem. Eng. J. 2015, 266, 289–298. [Google Scholar] [CrossRef]
- Phuntsho, S.; Hong, S.; Elimelech, M.; Shon, H.K. Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. J. Memb. Sci. 2014, 453, 240–252. [Google Scholar] [CrossRef]
- Bowen, W.R.; Jones, M.G.; Welfoot, J.S.; Yousef, H.N.S. Predicting salt rejections at nanofiltration membranes using artificial neural networks. Desalination 2000, 129, 147–162. [Google Scholar] [CrossRef]
- Shetty, G.R.; Malki, H.; Chellam, S. Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks. J. Memb. Sci. 2003, 212, 99–112. [Google Scholar] [CrossRef]
- Asghari, M.; Dashti, A.; Rezakazemi, M.; Jokar, E.; Halakoei, H. Application of neural networks in membrane separation. Rev. Chem. Eng. 2018. [Google Scholar] [CrossRef]
- Niemi, H.; Bulsari, A.; Palosaari, S. Simulation of membrane separation by neural networks. J. Memb. Sci. 1995, 102, 185–191. [Google Scholar] [CrossRef]
- Corbatón-Báguena, M.J.; Vincent-Vela, M.C.; Gozálvez-Zafrilla, J.M.; Álvarez-Blanco, S.; Lora-García, J.; Catalán-Martínez, D. Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance. Sep. Purif. Technol. 2016, 170, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Darwish, N.A.; Hilal, N.; Al-Zoubi, H.; Mohammad, A.W. Neural networks simulation of the filtraton of sodium chloride and magnesium chloride solutions using nanofiltration membranes. Chem. Eng. Res. Des. 2007, 85, 417–430. [Google Scholar] [CrossRef]
- Shetty, G.R.; Chellam, S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks. J. Memb. Sci. 2003, 217, 69–86. [Google Scholar] [CrossRef]
- Aydiner, C.; Demir, I.; Keskinler, B.; Ince, O. Joint analysis of transient flux behaviors via membrane fouling in hybrid PAC/MF processes using neural network. Desalination 2010, 250, 188–196. [Google Scholar] [CrossRef]
- Rahmanian, B.; Pakizeh, M.; Mansoori, S.A.A.; Esfandyari, M.; Jafari, D.; Maddah, H.; Maskooki, A. Prediction of MEUF process performance using artificial neural networks and ANFIS approaches. J. Taiwan Inst. Chem. Eng. 2012, 43, 558–565. [Google Scholar] [CrossRef]
- Abbas, A.; Al-Bastaki, N. Modeling of an RO water desalination unit using neural networks. Chem. Eng. J. 2005, 114, 139–143. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C.; Essalhi, M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. J. Memb. Sci. 2011, 368, 202–214. [Google Scholar] [CrossRef]
- Yang, C.; Peng, X.; Zhao, Y.; Wang, X.; Fu, J.; Liu, K.; Li, Y.; Li, P. Prediction model to analyze the performance of VMD desalination process. Comput. Chem. Eng. 2020, 132, 106619. [Google Scholar] [CrossRef]
- Liu, Y.; He, G.; Tan, M.; Nie, F.; Li, B. Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions. Desalination 2014, 338, 57–64. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant. Desalination 2017, 416, 140–156. [Google Scholar] [CrossRef]
- Pardeshi, P.M.; Mungray, A.A.; Mungray, A.K. Determination of optimum conditions in forward osmosis using a combined Taguchi-neural approach. Chem. Eng. Res. Des. 2016, 109, 215–225. [Google Scholar] [CrossRef]
- Jawad, J.; Hawari, A.H.; Zaidi, S. Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination 2020, 484. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.U.; Sadmani, A.; Kennedy, M.; Amy, G. Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Memb. Sci. 2009, 342, 251–262. [Google Scholar] [CrossRef]
- Mansouri, N.; Moghimi, M.; Taherinejad, M. Investigation on hydrodynamics and mass transfer in a feed channel of a spiral-wound membrane element using response surface methodology. Chem. Eng. Res. Des. 2019, 149, 147–157. [Google Scholar] [CrossRef]
- Rahmanian, B.; Pakizeh, M.; Esfandyari, M.; Heshmatnezhad, F.; Maskooki, A. Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). J. Hazard. Mater. 2011, 192, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.C.; Joshi, H. A new approach for optimization of small-scale RO membrane using artificial groundwater. Environ. Technol. 2014, 35, 2988–2999. [Google Scholar] [CrossRef]
- Zaviska, F.; Zou, L. Using modelling approach to validate a bench scale forward osmosis pre-treatment process for desalination. Desalination 2014, 350, 1–13. [Google Scholar] [CrossRef]
- Khayet, M.; Sanmartino, J.A.; Essalhi, M.; García-Payo, M.C.; Hilal, N. Modeling and optimization of a solar forward osmosis pilot plant by response surface methodology. Sol. Energy 2016, 137, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Minier-Matar, J.; Santos, A.; Hussain, A.; Janson, A.; Wang, R.; Fane, A.G.; Adham, S. Application of Hollow Fiber Forward Osmosis Membranes for Produced and Process Water Volume Reduction: An Osmotic Concentration Process. Environ. Sci. Technol. 2016, 50, 6044–6052. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M.; Deng, Q.; Cai, T. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination 2017, 420, 99–105. [Google Scholar] [CrossRef]
- Naghdali, Z.; Sahebi, S.; Mousazadeh, M.; Jamali, H.A. Optimization of the Forward Osmosis Process Using Aquaporin Membranes in Chromium Removal. Chem. Eng. Technol. 2020, 43, 298–306. [Google Scholar] [CrossRef]
- Hawari, A.H.; Kamal, N.; Altaee, A. Combined influence of temperature and flow rate of feeds on the performance of forward osmosis. Desalination 2016, 398, 98–105. [Google Scholar] [CrossRef]
- Phuntsho, S.; Sahebi, S.; Majeed, T.; Lotfi, F.; Kim, J.E.; Shon, H.K. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process. Chem. Eng. J. 2013, 231, 484–496. [Google Scholar] [CrossRef]
- Liu, Q.F.; Kim, S.H. Evaluation of membrane fouling models based on bench-scale experiments: A comparison between constant flowrate blocking laws and artificial neural network (ANNs) model. J. Memb. Sci. 2008, 310, 393–401. [Google Scholar] [CrossRef]
- Nejad, A.R.S.; Ghaedi, A.M.; Madaeni, S.S.; Baneshi, M.M.; Vafaei, A.; Emadzadeh, D.; Lau, W.J. Development of intelligent system models for prediction of licorice concentration during nanofiltration/reverse osmosis process. Desalin. Water Treat. 2019, 145, 83–95. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989. [Google Scholar] [CrossRef]
- Nguyen, D.; Widrow, B. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990. [Google Scholar]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Lecture Notes in Mathematics; Watson, G.A., Ed.; Springer: Heidelberg, Germany, 1978; Volume 630, pp. 106–115. [Google Scholar] [CrossRef] [Green Version]
- Barello, M.; Manca, D.; Patel, R.; Mujtaba, I.M. Neural network based correlation for estimating water permeability constant in RO desalination process under fouling. Desalination 2014, 345, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Madaeni, S.S.; Shiri, M.; Kurdian, A.R. Modeling, optimization, and control of reverse osmosis water treatment in kazeroon power plant using neural network. Chem. Eng. Commun. 2015, 202, 6–14. [Google Scholar] [CrossRef]
- Schmitt, F.; Banu, R.; Yeom, I.T.; Do, K.U. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochem. Eng. J. 2018, 133, 47–58. [Google Scholar] [CrossRef]
- Garson, G.D. Interpreting Neural-Network Connection Weights. AI Expert 1991, 6, 46–51. [Google Scholar]
- Goh, A.T.C. Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. 1994. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Altaee, A.; Baziar, M.; Li, X. Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network. Bioresour. Technol. 2020, 310, 123391. [Google Scholar] [CrossRef] [PubMed]
- Mengual, J.I.; García López, F.; Fernández-Pineda, C. Permeation and thermal osmosis of water through cellulose acetate membranes. J. Memb. Sci. 1986. [Google Scholar] [CrossRef]
Process | Input | Output | Network Architecture | Activation | Training Algorithm | Performance | References |
---|---|---|---|---|---|---|---|
Ultrafiltration (UF) of bleach plant effluent | pressure, tube flow velocity, the concentration ratio of the effluent | rejection of chemical oxygen demand (COD), membrane flux | 3-8-2 | log-sigmoid | Levenberg-Marquardt | Relative deviation = 12% | [8] |
Pilot and full-scale filtration of municipal drinking water | influent flow rate, feedwater flow rate, membrane flux, operation time, pH, total dissolved solids (TDS), UV254, temperature | membrane resistance | 8-8-1 | log-sigmoid | Levenberg–Marquardt | Relative error = 5% | [11] |
Reverse osmosis (RO) water desalination unit | feed pressure, temperature and salt concentration | permeate rate | 3-5-1 | log-sigmoid | Levenberg-Marquardt | R2 = 0.998 | [14] |
Filtration of sodium and magnesium chloride solutions | feed pressure, membrane flux, concentration | rejection | 3-4-1 | log-sigmoid | Bayesian Regularization | Absolute deviation < 5% | [10] |
Removal of organic micropollutants by nanofiltration (NF) | membrane salt rejection, molecular length, equivalent width, hydrophobicity | rejection | 4-2-1 | tan-sigmoid | Levenberg–Marquardt | R2 = 0.97 | [21] |
Hybrid microfiltration (MF) to study membrane fouling | time, adsorbent type, membrane type, pore size, surfactant type, concentration | transient flux | 6-6-3-1 | tan-sigmoid | - | R2 = 0.986 | [12] |
RO desalination pilot plant | feed concentration, temperature, flow rate, pressure | membrane flux, rejection | 4-5-3-1 | log-sigmoid | Levenberg-Marquardt | R2 = 1 | [15] |
micellar-enhanced UF of synthetic wastewater containing lead ions | pH, feed concentration, surfactant to metal molar ratio | membrane flux, rejection rate | 3-5-2 | log-sigmoid | Levenberg-Marquardt | R2 = 0.9254 R2 = 0.9813 | [13] |
Separation of particulate suspensions using MF with turbulence promote | Inlet velocity, transmembrane pressure (TMP), concentration | flux improvement efficiency | 3-12-1 | log-sigmoid | Gradient descent | R2 = 0.9891 | [17] |
Pilot plant filtration of polyethylene glycol (PEG) | TMP, crossflow velocity (CFV), time | membrane flux | 3-5-1 | tan-sigmoid | Levenberg-Marquardt | R2 = 0.9977 | [9] |
FO desalination of groundwater | feed CFV and temperature, draw solution CFV and temperature | reverse solute flux selectivity (RSFS) | 4-8-1 4-7-1 | exponential | BFGS quasi-Newton backpropagation | R2 = 0.9943 R2 = 0.9988 | [19] |
Small scale pilot plant seawater desalination plant | power, temperature, conductivity | Pressure, flow | 3-71-171 3-69-13-1 | sigmoid | Resilient backpropagation algorithm | Mean absolute error = 0.405 % Mean absolute error = 0.867 % | [18] |
Vacuum membrane distillation | feed inlet temperature, feed flow rate, membrane length | membrane flux, specific thermal energy consumption | 3-7-2 | tan-sigmoid | Levenberg-Marquardt | R2 = 0.9936 R2 = 0.9645 | [16] |
Modeling of Lab-scale forward osmosis desalination | membrane type, membrane orientation, feed molarity, draw molarity, molecular weight, feed velocity, draw velocity, feed temperature, draw temperature | membrane flux | 9-25-25-40-1 | log-sigmoid, tan-sigmoid, log-sigmoid | Levenberg-Marquardt | R2 = 0.973 | [20] |
Type | Variables | Symbol | Range | Unit |
---|---|---|---|---|
Input | Osmotic pressure difference | 20.00–25.37 | bar | |
Feed solution (FS) velocity | 11.05–29.45 | cm/s | ||
Draw solution (DS) velocity | 11.05–29.45 | cm/s | ||
FS temperature | 20–32 | °C | ||
DS temperature | 20–32 | °C | ||
Output | Membrane flux | 10.0–48.0 | LMH |
Performance | Dataset | |||
---|---|---|---|---|
Training | Validation | Test | All | |
Mean squared error (MSE) | 0.13268 | 1.13577 | 0.32092 | 0.24241 |
Root mean squared error (RMSE) | 0.36426 | 0.60354 | 0.56649 | 0.49235 |
Sum of squared error (SSE) | 8.22636 | 7.95036 | 2.24641 | 18.42314 |
R-value | 0.99953 | 0.99647 | 0.99888 | 0.99013 |
R2 | 0.99906 | 0.99295 | 0.99776 | 0.98036 |
Adjusted R2 | 0.99898 | 0.95771 | 0.98657 | 0.97895 |
Input weight Matrix, IW | IW{1,1} = | ||||
---|---|---|---|---|---|
{Destination: Hidden layer | 3.4157 | −0.5880 | 0.9954 | 1.1900 | −1.4431 |
Source: Inputs} | 2.7786 | −3.3672 | −1.0787 | −1.5737 | 0.0933 |
−1.1643 | −2.6092 | 2.8253 | −0.3323 | 1.6905 | |
3.1871 | 3.5976 | 2.7567 | −1.8359 | 0.1077 | |
0.1369 | 0.3260 | 4.0058 | −1.1023 | −2.7599 | |
−3.7725 | −0.1537 | 0.1178 | −0.1366 | −0.5589 | |
−3.3965 | −0.5918 | 2.1567 | 4.4484 | 2.0689 | |
−1.0245 | 4.2560 | −0.8856 | 0.8582 | −1.1337 | |
0.0484 | 1.1973 | −1.7707 | 0.2235 | −0.2009 | |
0.4607 | 2.5649 | −0.4886 | 0.0249 | 1.1392 | |
Bias vector, b | b{1} = | ||||
{Destination: Hidden layer} | −1.2832 | ||||
−1.4174 | |||||
1.4586 | |||||
−1.2827 | |||||
−2.6367 | |||||
1.5104 | |||||
−1.2738 | |||||
0.1608 | |||||
−0.5107 | |||||
2.9615 | |||||
Layer weight matrix, LW | LW{2,1} T | ||||
{Destination: Output layer | 0.5896 | ||||
Source: Hidden layer} | −0.2121 | ||||
0.5402 | |||||
0.1981 | |||||
0.0384 | |||||
−0.3912 | |||||
−0.0861 | |||||
−0.1507 | |||||
0.7699 | |||||
0.2288 | |||||
Bias scalar, b | b{1} = − 0.0714 | ||||
{Destination: Output layer} |
StdOrder | Factors | Response | ||||
---|---|---|---|---|---|---|
Osmotic Pressure Difference (bar) | Feed Velocity (cm/s) | Draw Velocity (cm/s) | Feed Temperature (°C) | Draw Temperature (°C) | Membrane Flux (LMH) | |
1 | 20.0 | 11 | 20 | 26 | 26 | 4.7 |
2 | 25.0 | 11 | 20 | 26 | 26 | 41.0 |
3 | 20.0 | 29 | 20 | 26 | 26 | 18.1 |
4 | 25.0 | 29 | 20 | 26 | 26 | 52.8 |
5 | 22.5 | 20 | 11 | 20 | 26 | 11.1 |
6 | 22.5 | 20 | 29 | 20 | 26 | 21.8 |
7 | 22.5 | 20 | 11 | 32 | 26 | 14.5 |
8 | 22.5 | 20 | 29 | 32 | 26 | 26.8 |
9 | 22.5 | 11 | 20 | 26 | 20 | 16.1 |
10 | 22.5 | 29 | 20 | 26 | 20 | 24.9 |
11 | 22.5 | 11 | 20 | 26 | 32 | 3.4 |
12 | 22.5 | 29 | 20 | 26 | 32 | 30.8 |
13 | 20.0 | 20 | 11 | 26 | 26 | 20.8 |
14 | 25.0 | 20 | 11 | 26 | 26 | 41.6 |
15 | 20.0 | 20 | 29 | 26 | 26 | 7.8 |
16 | 25.0 | 20 | 29 | 26 | 26 | 54.4 |
17 | 22.5 | 20 | 20 | 20 | 20 | 10.9 |
18 | 22.5 | 20 | 20 | 32 | 20 | 23.2 |
19 | 22.5 | 20 | 20 | 20 | 32 | 17.8 |
20 | 22.5 | 20 | 20 | 32 | 32 | 17.5 |
21 | 22.5 | 11 | 11 | 26 | 26 | 18.6 |
22 | 22.5 | 29 | 11 | 26 | 26 | 17.7 |
23 | 22.5 | 11 | 29 | 26 | 26 | 11.4 |
24 | 22.5 | 29 | 29 | 26 | 26 | 19.0 |
25 | 20.0 | 20 | 20 | 20 | 26 | 14.5 |
26 | 25.0 | 20 | 20 | 20 | 26 | 45.1 |
27 | 20.0 | 20 | 20 | 32 | 26 | 14.0 |
28 | 25.0 | 20 | 20 | 32 | 26 | 46.8 |
29 | 22.5 | 20 | 11 | 26 | 20 | 15.0 |
30 | 22.5 | 20 | 29 | 26 | 20 | 35.5 |
31 | 22.5 | 20 | 11 | 26 | 32 | 29.1 |
32 | 22.5 | 20 | 29 | 26 | 32 | 18.0 |
33 | 20.0 | 20 | 20 | 26 | 20 | 12.8 |
34 | 25.0 | 20 | 20 | 26 | 20 | 37.8 |
35 | 20.0 | 20 | 20 | 26 | 32 | 12.4 |
36 | 25.0 | 20 | 20 | 26 | 32 | 46.7 |
37 | 22.5 | 11 | 20 | 20 | 26 | 3.3 |
38 | 22.5 | 29 | 20 | 20 | 26 | 19.8 |
39 | 22.5 | 11 | 20 | 32 | 26 | 17.7 |
40 | 22.5 | 29 | 20 | 32 | 26 | 17.4 |
41 | 22.5 | 20 | 20 | 26 | 26 | 17.6 |
Source | DF a | SS b | MS c | F-Value | p-Value | R2 | Adj. R2 |
---|---|---|---|---|---|---|---|
Model | 20 | 6919.03 | 345.95 | 19.85 | p < 0.001 | 94.08% | 89.34% |
Residual | 25 | 435.72 | 17.43 | ||||
Total | 45 | 7354.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawad, J.; Hawari, A.H.; Zaidi, S.J. Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques. Membranes 2021, 11, 70. https://doi.org/10.3390/membranes11010070
Jawad J, Hawari AH, Zaidi SJ. Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques. Membranes. 2021; 11(1):70. https://doi.org/10.3390/membranes11010070
Chicago/Turabian StyleJawad, Jasir, Alaa H. Hawari, and Syed Javaid Zaidi. 2021. "Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques" Membranes 11, no. 1: 70. https://doi.org/10.3390/membranes11010070
APA StyleJawad, J., Hawari, A. H., & Zaidi, S. J. (2021). Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques. Membranes, 11(1), 70. https://doi.org/10.3390/membranes11010070