New Poly(imide)s Bearing Alkyl Side-Chains: A Study on the Impact of Size and Shape of Lateral Groups on Thermal, Mechanical, and Gas Transport Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Monomer Synthesis and Characterization
2.3. Polymer Synthesis and Characterization
2.4. Film Preparation
2.5. Instrumentation and Measurements
3. Results and Discussion
3.1. Monomers and Polymers: Synthesis and Characterization
3.2. Inherent Viscosity, Molecular Weight, and Solubility
3.3. Density, Fractional Free Volume, and Wide-Angle X-ray
3.4. Thermal and Mechanical Properties
3.5. Gas Transport Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nunes, S.P.; Peinemann, K.V. Membrane Technology: In the Chemical Industry; Wiley-VCH: Hoboken, NJ, USA, 2006; ISBN 3527313168. [Google Scholar]
- Baker, R.W.; Low, B.T. Gas separation membrane materials: A perspective. Macromolecules 2014. [Google Scholar] [CrossRef]
- Sanders, D.F.; Smith, Z.P.; Guo, R.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54, 729–4761. [Google Scholar] [CrossRef] [Green Version]
- McKeown, N.B.; Budd, P.M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35, 675. [Google Scholar] [CrossRef] [PubMed]
- Naiying, D.; Jingshe, S.; Robertson, G.P.; Pinnau, I.; Guiver, M.D. Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′- tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene. Macromol. Rapid Commun. 2008. [Google Scholar] [CrossRef] [Green Version]
- Park, H.B.; Han, S.H.; Jung, C.H.; Lee, Y.M.; Hill, A.J. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. 2010, 359, 11–24. [Google Scholar] [CrossRef]
- Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y.R.; Kim, J.W.; Jin, S.W.; Oh, S.Y.; Sun, L.; Zi, G.; et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654. [Google Scholar] [CrossRef]
- Jia, M.; Zhou, M.; Li, Y.; Lu, G.; Huang, X. Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains. Polym. Chem. 2018, 9, 920–930. [Google Scholar] [CrossRef]
- Wang, C.; Cao, S.; Chen, W.; Xu, C.; Zhao, X.; Li, J.; Ren, Q. Synthesis and properties of fluorinated polyimides with multi-bulky pendant groups. RSC Adv. 2017. [Google Scholar] [CrossRef] [Green Version]
- Nistor, C.; Shishatskiy, S.; Popa, M.; Nunes, S.P. Composite membranes with cross-linked matrimid selective layer for gas separation. Environ. Eng. Manag. J. 2008. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Jiang, C.; Zhao, X.; Li, J.; Ren, Q. Synthesis and characterization of an aromatic diamine and its polyimides containing asymmetric large side groups. Polym. Bull. 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Wang, J.; Zhu, X.; Qi, D.; Li, W.; Shen, K. A novel family of optically transparent fluorinated hyperbranched polyimides with long linear backbones and bulky substituents. Eur. Polym. J. 2020. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, X.; Zheng, F.; Lu, X.; Lu, Q. High performance transparent polyimides by controlling steric hindrance of methyl side groups. Eur. Polym. J. 2019. [Google Scholar] [CrossRef]
- Tundidor-Camba, A.; Terraza, C.A.; Tagle, L.H.; Coll, D.; Ortiz, P.; De Abajo, J.; Maya, E.M. Novel aromatic polyimides derived from 2,8-di(3-aminophenyl)dibenzofuran. Synthesis, characterization and evaluation of properties. RSC Adv. 2015. [Google Scholar] [CrossRef]
- Yi, L.; Li, C.; Huang, W.; Yan, D. Soluble polyimides from 4,4′-diaminodiphenyl ether with one or two tert-butyl pedant groups. Polymer 2015. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, X.; Shi, H.; Zhou, W.; Cai, Y.; Li, W.; Yao, H. New poly(amide-imide)s with trifluoromethyl and chloride substituents: Synthesis, thermal, dielectric, and optical properties. Eur. Polym. J. 2017. [Google Scholar] [CrossRef]
- Yen, H.J.; Wu, J.H.; Huang, Y.H.; Wang, W.C.; Lee, K.R.; Liou, G.S. Novel thermally stable and soluble triarylamine functionalized polyimides for gas separation. Polym. Chem. 2014. [Google Scholar] [CrossRef]
- Tundidor-Camba, A.; Terraza, C.A.; Tagle, L.H.; Coll, D.; Ortiz, P.; Pérez, G.; Jessop, I.A. Aromatic polyimides containing cyclopropylamide fragment as pendant group. A study of the balance between solubility and structural rigidity. Macromol. Res. 2017. [Google Scholar] [CrossRef]
- Pérez, G.; Terraza, C.A.; Coll, D.; Ortiz, P.; Aguilar-Vega, M.; González, D.M.; Tagle, L.H.; Tundidor-Camba, A. Synthesis and characterization of processable fluorinated aromatic poly(benzamide imide)s derived from cycloalkane substituted diamines, and their application in a computationally driven synthesis methodology. Polymer 2019. [Google Scholar] [CrossRef]
- Murthy, N.S. X-ray diffraction from polymers. In Polymer Morphology: Principles, Characterization, and Processing; Wiley: Hoboken, NJ, USA, 2016; ISBN 9781118892756. [Google Scholar]
- Bondi, A. Van der waals volumes and radii. J. Phys. Chem. 1964. [Google Scholar] [CrossRef]
- Carrera-Figueiras, C.; Aguilar-Vega, M. Gas permeability and selectivity of hexafluoroisopropylidene aromatic isophthalic copolyamides. J. Polym. Sci. Part B Polym. Phys. 2005. [Google Scholar] [CrossRef]
- Cornelius, C.J.; Marand, E. Hybrid inorganic–organic materials based on a 6FDA–6FpDA–DABA polyimide and silica: Physical characterization studies. Polymer 2002, 43, 2385–2400. [Google Scholar] [CrossRef]
- Jacobsen, N.E. NMR Data Interpretation Explained: Understanding 1D and 2D NMR Spectra of Organic Compounds and Natural Products, 1st ed; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 978-1-118-37022-3. [Google Scholar]
- Maya, E.M.; Lozano, A.E.; de Abajo, J.; de la Campa, J.G. Chemical modification of copolyimides with bulky pendent groups: Effect of modification on solubility and thermal stability. Polym. Degrad. Stab. 2007, 92, 2294–2299. [Google Scholar] [CrossRef]
- Billmeyer, F.W. Textbook of Polymer Science. Kobunshi 1963. [Google Scholar] [CrossRef]
- Privalko, V.P.; Lipatov, Y.S. Glass Transition and Chain Flexibility of Linear Polymers. J. Macromol. Sci. Part B 1974. [Google Scholar] [CrossRef]
- Yang, S.; He, Y.; Liu, Y.; Leng, J. Shape-memory poly(arylene ether ketone)s with tunable transition temperatures and their composite actuators capable of electric-triggered deformation. J. Mater. Chem. C 2019. [Google Scholar] [CrossRef]
- Rivera Nicholls, A.; Kull, K.; Cerrato, C.; Craft, G.; Diry, J.B.; Renoir, E.; Perez, Y.; Harmon, J.P. Thermomechanical characterization of thermoplastic polyimides containing 4,4’-methylenebis(2,6-dimethylaniline) and polyetherdiamines. Polym. Eng. Sci. 2019. [Google Scholar] [CrossRef]
- Hasegawa, M.; Horiuchi, M.; Wada, Y. Polyimides containing trans-1,4-cyclohexane unit (II). Low-K and low-CTE semi- and wholly cycloaliphatic polyimides. High Perform. Polym. 2007. [Google Scholar] [CrossRef]
- Cheng, S.; Shen, D.; Zhu, X.; Tian, X.; Zhou, D.; Fan, L.J. Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ sol-gel techniques. Eur. Polym. J. 2009. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fujii, M.; Ishii, J.; Yamaguchi, S.; Takezawa, E.; Kagayama, T.; Ishikawa, A. Colorless polyimides derived from 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer 2014. [Google Scholar] [CrossRef]
- Kim, G.; Byun, S.; Yang, Y.; Kim, S.; Kwon, S.; Jung, Y. Film shrinkage inducing strong chain entanglement in fluorinated polyimide. Polymer 2015. [Google Scholar] [CrossRef]
- Stevens, K.A.; Moon, J.D.; Borjigin, H.; Liu, R.; Joseph, R.M.; Riffle, J.S.; Freeman, B.D. Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles. J. Membr. Sci. 2020. [Google Scholar] [CrossRef]
- Ogieglo, W.; Puspasari, T.; Ma, X.; Pinnau, I. Sub-100 nm carbon molecular sieve membranes from a polymer of intrinsic microporosity precursor: Physical aging and near-equilibrium gas separation properties. J. Membr. Sci. 2020. [Google Scholar] [CrossRef]
- Hu, X.; He, Y.; Wang, Z.; Yan, J. Intrinsically microporous co-polyimides derived from ortho-substituted Tröger’s Base diamine with a pendant tert-butyl-phenyl group and their gas separation performance. Polymer 2018. [Google Scholar] [CrossRef]
- Terraza, C.A.; Tagle, L.H.; Santiago-García, J.L.; Canto-Acosta, R.J.; Aguilar-Vega, M.; Hauyon, R.A.; Coll, D.; Ortiz, P.; Perez, G.; Herrán, L.; et al. Synthesis and properties of new aromatic polyimides containing spirocyclic structures. Polymer 2018, 137, 283–292. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008. [Google Scholar] [CrossRef]
PIs | ηinh a (dL/g) | Mn (×104 Da) | Mw (×104 Da) | DPI | Solubility at 19 °C | |||||
---|---|---|---|---|---|---|---|---|---|---|
DMSO | DMF | DMAc | NMP | THF | CHCl3 | |||||
PI-3 | 0.3 | 4.728 | 6.321 | 1.3 | + | + | + | + | + | - |
PI-4 | 0.2 | 2.793 | 4.176 | 1.5 | + | + | + | + | + | - |
PI-t-4 | 0.4 | 5.385 | 7.364 | 1.4 | + | + | + | + | + | + |
PI-5 | 0.4 | 5.287 | 6.976 | 1.3 | + | + | + | + | + | - |
PI-6 | 0.5 | 5.897 | 8.131 | 1.4 | + | + | + | + | + | - |
PIs | Ρ a (g/cm3) | Vw-bondy b (cm3/mol) | FFV c | Dsp d (Å) |
---|---|---|---|---|
PI-3 | 1.4423 | 278.23 | 0.132 | 5.0 |
PI-4 | n.d. | n.d. | n.d. | 5.1 |
PI-t-4 | 1.3806 | 288.45 | 0.158 | 5.1; 14.3 |
PI-5 | 1.3982 | 298.69 | 0.137 | 4.9 |
PI-6 | 1.3803 | 308.92 | 0.138 | 5.1; 10.9 |
PIs | T5 (°C) a | T10 (°C) b | Char Yield (%) | Tg (°C) c |
---|---|---|---|---|
PI-3 | 428 | 458 | 42 | 270 |
PI-4 | 416 | 448 | 39 | 255 |
PI-t-4 | 421 | 455 | 44 | 265 |
PI-5 | 428 | 468 | 45 | 250 |
PI-6 | 423 | 448 | 43 | 240 |
PIs | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (GPa) |
---|---|---|---|
PI-3 | 45 | 4.10 | 1.43 |
PI-t-4 | 53 | 3.2 | 2.19 |
PI-5 | 72 | 5.28 | 1.94 |
PI-6 | 87 | 11.98 | 1.74 |
PIs | Permeability (Barrer a) | Ideal Selectivity (α) | |||||||
---|---|---|---|---|---|---|---|---|---|
He | H2 | O2 | N2 | CH4 | CO2 | O2/N2 | CO2/CH4 | CO2/N2 | |
PI-3 | 52 | 46 | 5.4 | 1.2 | 1.1 | 23 | 4.5 | 21.3 | 19.9 |
PI-t-4 | 139 | 136 | 16.7 | 3.3 | 2.3 | 75 | 5.1 | 32.1 | 22.7 |
PI-5 | 44 | 42 | 5.9 | 1.4 | 1.2 | 27 | 4.2 | 21.9 | 19.8 |
PI-6 | 45 | 43 | 6.7 | 1.7 | 1.7 | 32 | 3.9 | 18.9 | 19.5 |
Matrimid * | - | - | 2.1 | 0.3 | 0.3 | 10 | 6.5 | 35.7 | 31.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-González, F.E.; Pérez, G.; Niebla, V.; Jessop, I.; Martin-Trasanco, R.; Coll, D.; Ortiz, P.; Aguilar-Vega, M.; Tagle, L.H.; Terraza, C.A.; et al. New Poly(imide)s Bearing Alkyl Side-Chains: A Study on the Impact of Size and Shape of Lateral Groups on Thermal, Mechanical, and Gas Transport Properties. Membranes 2020, 10, 141. https://doi.org/10.3390/membranes10070141
Rodríguez-González FE, Pérez G, Niebla V, Jessop I, Martin-Trasanco R, Coll D, Ortiz P, Aguilar-Vega M, Tagle LH, Terraza CA, et al. New Poly(imide)s Bearing Alkyl Side-Chains: A Study on the Impact of Size and Shape of Lateral Groups on Thermal, Mechanical, and Gas Transport Properties. Membranes. 2020; 10(7):141. https://doi.org/10.3390/membranes10070141
Chicago/Turabian StyleRodríguez-González, Fidel E., Germán Pérez, Vladimir Niebla, Ignacio Jessop, Rudy Martin-Trasanco, Deysma Coll, Pablo Ortiz, Manuel Aguilar-Vega, Luis H. Tagle, Claudio A. Terraza, and et al. 2020. "New Poly(imide)s Bearing Alkyl Side-Chains: A Study on the Impact of Size and Shape of Lateral Groups on Thermal, Mechanical, and Gas Transport Properties" Membranes 10, no. 7: 141. https://doi.org/10.3390/membranes10070141
APA StyleRodríguez-González, F. E., Pérez, G., Niebla, V., Jessop, I., Martin-Trasanco, R., Coll, D., Ortiz, P., Aguilar-Vega, M., Tagle, L. H., Terraza, C. A., & Tundidor-Camba, A. (2020). New Poly(imide)s Bearing Alkyl Side-Chains: A Study on the Impact of Size and Shape of Lateral Groups on Thermal, Mechanical, and Gas Transport Properties. Membranes, 10(7), 141. https://doi.org/10.3390/membranes10070141