Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. SILMs Preparation y Experimental Tests
2.3. UF and NF Membranes Experimental Tests
2.4. Transport Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takahashi, S. Challenges for Local Seek Sustainable Forest. J. Environ. Dev. 2008, 17, 192–211. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, T.; Krott, M.; Calvo, J.F.; Ganesh, S.P.; Makoto, I. Measurement and evaluation of livelihood assets in sustainable forest commons governance. Land Use Policy. 2020, 30, 908–914. [Google Scholar] [CrossRef]
- Baño, V.; Godoy, D.; Figueredo, D.; Vega, A. Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine. Materials (Basel) 2018, 11, 2436. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef] [Green Version]
- Murzin, D.Y.; Mäki-Arvela, P.; Salmi, T.; Holmbom, B. Catalytic transformations for production of fine chemicals and pharmaceuticals from wood-derived raw materials. Chem. Eng. Technol. 2007, 30, 569–576. [Google Scholar] [CrossRef]
- Wertz, J.L.; Deleu, M.; Coppée, S.; Richel, A. Hemicelluloses and Lignin in Biorefineries; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Abejón, R.; Pérez-Acebo, H.; Clavijo, L. Alternatives for chemical and biochemical lignin valorization: Hot topics from a bibliometric analysis of the research published during the 2000–2016 period. Processes 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Abejón, R. A bibliometric study of scientific publications regarding hemicellulose valorization during the 2000–2016 period: Identification of alternatives and hot topics. ChemEngineering 2018, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Yu, I.K.M.; Liu, Y.; Ruan, X.; Tsang, D.C.W.; Hunt, A.J.; Ok, Y.S.; Song, H.; Zhang, S. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresour. Technol. 2018, 269, 465–475. [Google Scholar] [CrossRef]
- Wang, H.; Pu, Y.; Ragauskas, A.; Yang, B. From lignin to valuable products–strategies, challenges, and prospects. Bioresour. Technol. 2019, 271, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Delidovich, I.; Leonhard, K.; Palkovits, R. Cellulose and hemicellulose valorisation: An integrated challenge of catalysis and reaction engineering. Energy Environ. Sci. 2014, 7, 2803. [Google Scholar] [CrossRef]
- Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value-Added Chemicals from Biomass Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin, DOE Scientific and Technical Information; US Department of Energy: Washington, DC, USA, 2007. [CrossRef] [Green Version]
- Abels, C.; Carstensen, F.; Wessling, M. Membrane processes in biorefinery applications. J. Memb. Sci. 2013, 444, 285–317. [Google Scholar] [CrossRef]
- Hill, M.; Fricke, A.L. Ultrafiltration studies on a kraft black liquor. Tappi J. 1984, 67, 100–103. [Google Scholar]
- Drouin, M.P.; Desrochers, M.J. Isolation of Lignin from Spent Kraft Liquor by Hyper and Ultra Filtration; AIChE Natl. Meet; AIChE: Senneville, QC, Canada, 1987; p. 35. [Google Scholar]
- Neytzell-de Wilde, F.G. Recovery of lignosulphonate from a calcium bisulphite pulp mill effluent by ultrafiltration. Desalination 1987, 67, 495–505. [Google Scholar] [CrossRef]
- Wallberg, O.; Jönsson, A.S.; Wimmerstedt, R. Ultrafiltration of kraft black liquor with a ceramic membrane. Desalination 2003, 156, 145–153. [Google Scholar] [CrossRef]
- Brodin, I.; Sjo, E. Kraft lignin as feedstock for chemical products: The effects of membrane filtration. Holzforschung 2009, 63, 290–297. [Google Scholar] [CrossRef]
- Jönsson, A.; Wallberg, O. Cost estimates of kraft lignin recovery by ultrafiltration. Desalination 2009, 237, 254–267. [Google Scholar] [CrossRef]
- Žabková, M.; da Silva, E.A.B.; Rodrigues, A.E. Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J. Memb. Sci. 2007, 301, 221–237. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Datta, S.; Bhattacharjee, C. Performance study during ultrafiltration of Kraft black liquor using rotating disk membrane module. J. Clean Prod. 2006, 14. [Google Scholar] [CrossRef]
- Kallioinen, M.; Pekkarinen, M.; Nuortila-jokinen, J.; Nystr, M. Comparison of the performance of two different regenerated cellulose ultrafiltration membranes at high filtration pressure. J. Membr. Sci. 2007, 294, 93–102. [Google Scholar] [CrossRef]
- Wallberg, O.; Wimmerstedt, R. Fractionation and concentration of kraft black liquor lignin with ultrafiltration. Desalination 2003, 154, 187–199. [Google Scholar] [CrossRef]
- Weinwurm, F.; Drljo, A.; Silva, T.L.S.; Friedl, A. Principles of ethanol organosolv lignin precipitation: Process simulation and energy demand. Chem. Eng. Trans. 2014, 39, 583–588. [Google Scholar] [CrossRef]
- Werhan, H.; Farshori, A.; von Rohr, P.R. Separation of lignin oxidation products by organic solvent nanofiltration. J. Memb. Sci. 2012, 423–424, 404–412. [Google Scholar] [CrossRef]
- Moniz, P.; Serralheiro, C.; Matos, C.T.; Boeriu, C.G.; Frissen, A.E.; Duarte, L.C.; Roseiro, L.B.; Pereira, H.; Carvalheiro, F. Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw. Process Biochem. 2018, 65, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Koncsag, C.I.; Kirwan, K. A membrane screening for the separation/concentration of dilignols and trilignols from solvent extracts. Sep. Purif. Technol. 2012, 94, 54–60. [Google Scholar] [CrossRef]
- Dubreuil, M.F.S.; Servaes, K.; Ormerod, D.; van Houtven, D.; Porto-Carrero, W.; Vandezande, P.; Vanermen, G.; Buekenhoudt, A. Selective membrane separation technology for biomass valorization towards bio-aromatics. Sep. Purif. Technol. 2017, 178, 56–65. [Google Scholar] [CrossRef]
- Servaes, K.; Varhimo, A.; Dubreuil, M.; Bulut, M.; Vandezande, P.; Siika-aho, M.; Sirviö, J.; Kruus, K.; Porto-Carrero, W.; Bongers, B. Purification and concentration of lignin from the spent liquor of the alkaline oxidation of woody biomass through membrane separation technology. Ind. Crops Prod. 2017, 106, 86–96. [Google Scholar] [CrossRef]
- Vanneste, J.; de Ron, S.; Vandecruys, S.; Soare, S.A.; Darvishmanesh, S.; van der Bruggen, B. Techno-economic evaluation of membrane cascades relative to simulated moving bed chromatography for the purification of mono- and oligosaccharides. Sep. Purif. Technol. 2011, 80, 600–609. [Google Scholar] [CrossRef]
- Abejón, R.; Garea, A.; Irabien, A. Multiobjective optimization of membrane processes for chemicals ultrapurification. Comp. Aided Chem. Eng. 2012, 30, 542–546. [Google Scholar] [CrossRef]
- Costa, C.A.E.; Pinto, P.C.R.; Rodrigues, A.E. Lignin fractionation from E. Globulus kraft liquor by ultrafiltration in a three stage membrane sequence. Sep. Purif. Technol. 2018, 192, 140–151. [Google Scholar] [CrossRef]
- Lyu, H.; Chen, K.; Yang, X.; Younas, R.; Zhu, X.; Luo, G.; Zhang, S.; Chen, J. Two-stage nanofiltration process for high-value chemical production from hydrolysates of lignocellulosic biomass through hydrothermal liquefaction. Sep. Purif. Technol. 2015, 147, 276–283. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Alén, R.; Paleologou, M.; Kannangara, M.; Kihlman, J. Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: A review. BioResources 2019, 14, 2300–2351. [Google Scholar]
- Humpert, D.; Ebrahimi, M.; Czermak, P. Membrane technology for the recovery of lignin: A review. Membranes (Basel) 2016, 6, 42. [Google Scholar] [CrossRef]
- Kevlich, N.S.; Shofner, M.L.; Nair, S. Membranes for Kraft black liquor concentration and chemical recovery: Current progress, challenges, and opportunities. Sep. Sci. Technol. 2017, 52, 1070–1094. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, A.; Panesar, P.S. A comparative study on experimental and response surface optimization of lactic acid synergistic extraction using green emulsion liquid membrane. Sep. Purif. Technol. 2019, 211, 54–62. [Google Scholar] [CrossRef]
- Yan, C.N.; Othman, N.; Ooi, Z. Prediction of Kraft lignin extraction performance using emulsion liquid membrane carrier-diffusion model. J. Teknol. 2014, 2, 17–21. [Google Scholar]
- Chakrabarty, K.; Saha, P.; Ghoshal, A.K. Separation of lignosulfonate from its aqueous solution using supported liquid membrane. J. Membr. Sci. 2009, 340, 84–91. [Google Scholar] [CrossRef]
- Chakrabarty, K.; Saha, P.; Ghoshal, A.K. Separation of lignosulfonate from its aqueous solution using emulsion liquid membrane. J. Memb. Sci. 2010, 360, 34–39. [Google Scholar] [CrossRef]
- Kontturi, A.K.; Kontturi, K.; Niinikoski, P.; Sundholm, G. Extraction of a polyelectrolyte using a supported liquid membrane I. Choice of a suitable carrier-solvent system. Acta Chem. Scand. 1990, 44, 879–882. [Google Scholar] [CrossRef] [Green Version]
- Kontturi, A.K.; Kontturi, K.; Niinikoski, P.; Sundholm, G. Extraction of a polyelectrolyte using a supported liquid membrane II. Extraction and fractionation of lignosulfonate. Acta Chem. Scand. 1990, 44, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Singh, R.K.; Chowdhury, P. Efficient extraction and recovery of Lignosulfonate using sunflower oil as green solvent in liquid membrane transport: Equilibrium and kinetic study. J. Ind. Eng. Chem. 2018, 67, 109–122. [Google Scholar] [CrossRef]
- Ooi, Z.-Y.; Othman, N.; Mohamad, M.; Rashid, R. Removal performance of lignin compound from simulated pulping wastewater using emulsion liquid membrane process. Int. J. Glob. Warm. 2014, 6, 270–283. [Google Scholar]
- Xian, C.K.; Othman, N.; Harruddin, N.; Nasruddin, N.A.; Ooi, Z.Y. Extraction of Lignosulfonate using TOA-Kerosene-PVDF in Supported Liquid Membrane Process. J. Teknol. 2014, 2, 59–63. [Google Scholar]
- Ooi, Z.; Harruddin, N. Recovery of Kraft lignin from pulping wastewater via emulsion liquid membrane process. Biotechnol. Prog. 2015, 31, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Mäki-Arvela, P.; Anugwom, I.; Virtanen, P.; Sjöholm, R.; Mikkola, J.P. Dissolution of lignocellulosic materials and its constituents using ionic liquids—A review. Ind. Crops Prod. 2010, 32, 175–201. [Google Scholar] [CrossRef]
- Lee, S.H.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 2009, 102, 1368–1376. [Google Scholar] [CrossRef]
- Pu, Y.; Jiang, N.; Ragauskas, A.J. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 2007, 27, 23–33. [Google Scholar] [CrossRef]
- Tan, S.S.Y.; MacFarlane, D.R.; Upfal, J.; Edye, L.A.; Doherty, W.O.S.; Patti, A.F.; Pringle, J.M.; Scott, J.L. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 2009, 11, 339. [Google Scholar] [CrossRef] [Green Version]
- Glas, D.; van Doorslaer, C.; Depuydt, D.; Liebner, F.; Rosenau, T.; Binnemans, K.; de Vos, D.E. Lignin solubility in non-imidazolium ionic liquids. J. Chem. Technol. Biotechnol. 2015, 90, 1821–1826. [Google Scholar] [CrossRef]
- Balaji, C.; Banerjee, T.; Goud, V.V. COSMO-RS based predictions for the extraction of lignin from lignocellulosic biomass using ionic liquids: Effect of cation and anion combination. J. Solution Chem. 2012, 41, 1610–1630. [Google Scholar] [CrossRef]
- Hamada, Y.; Yoshida, K.; Asai, R.; Hayase, S.; Nokami, T.; Izumi, S.; Itoh, T. A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green Chem. 2013, 15, 1863. [Google Scholar] [CrossRef]
- Prado, R.; Erdocia, X.; Labidi, J. Lignin extraction and purification with ionic liquids. J. Chem. Technol. Biotechnol. 2013, 88, 1248–1257. [Google Scholar] [CrossRef]
- Abejón, R.; Abejón, A.; Garea, A.; Irabien, A. Transport of lignin and other lignocellulosic components through supported ionic liquid membranes. Chem. Eng. Trans. 2017, 57, 1153–1158. [Google Scholar] [CrossRef]
- Abejón, R.; Rabadán, J.; Lanza, S.; Abejón, A.; Garea, A.; Irabien, A. Supported Ionic Liquid Membranes for Separation of Lignin Aqueous Solutions. Processes 2018, 6, 143. [Google Scholar] [CrossRef] [Green Version]
- Alén, R.; Hartus, T. UV spectrophotometric determination of lignin from alkaline pulping liquors. Cellul. Chem. Technol. 1987, 618, 613–618. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Ochromowicz, K.; Apostoluk, W. Modelling of carrier mediated transport of chromium(III) in the supported liquid membrane system with D2EHPA. Sep. Purif. Technol. 2010, 72, 112–117. [Google Scholar] [CrossRef]
- De, S.; Bhattacharya, P.K. Flux prediction of black liquor in cross flow ultrafiltration using low and high rejecting membranes. J. Memb. Sci. 1995, 109, 109–123. [Google Scholar] [CrossRef]
- Konovalova, V.; Kolesnyk, I.; Burban, A.; Kujawski, W.; Knozowska, K.; Kujawa, J. Improvement of separation and transport performance of ultrafiltration membranes by magnetically active nanolayer, Colloids Surfaces A Physicochem. Eng. Asp. 2019, 569, 67–77. [Google Scholar] [CrossRef]
- Fashi, A.; Ahmad, A.; Zamani, A. Talanta Solvent-stir bar microextraction system using pure tris- (2-ethylhexyl) phosphate as supported liquid membrane: A new and e ffi cient design for the extraction of malondialdehyde from biological fl uids. Talanta 2018, 182, 299–305. [Google Scholar] [CrossRef]
- Chakravorthy, B.; Srivastava, A.S. Application of membrane technologies for recovery of water from pulp and paper mill effluents. Desalination 1987, 155, 1986. [Google Scholar] [CrossRef]
- Sridhar, S.; Bhattacharya, P.K. Limiting flux phenomena in ultrafiltration of kraft black liquor. J. Memb. Sci. 1991, 57, 187–206. [Google Scholar] [CrossRef]
- Satyanarayana, S.V.; Bhattacharya, P.K.; De, S. Flux decline during ultrafiltration of kraft black liquor using different flow modules: A comparative study. Sep. Purif. Technol. 2000, 20, 155–167. [Google Scholar] [CrossRef]
- Weinwurm, F.; Drljo, A.; Waldmüller, W.; Fiala, B.; Niedermayer, J.; Friedl, A. Lignin concentration and fractionation from ethanol organosolv liquors by ultra- and nanofiltration. J. Clean. Prod. 2016, 136, 62–71. [Google Scholar] [CrossRef]
- Aminzadeh, S.; Lauberts, M.; Dobele, G.; Ponomarenko, J.; Mattsson, T.; Lindström, M.E.; Sevastyanova, O. Membrane filtration of kraft lignin: Structural charactristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crops Prod. 2018, 112, 200–209. [Google Scholar] [CrossRef]
- Arkell, A.; Olsson, J.; Wallberg, O. Chemical Engineering Research and Design Process performance in lignin separation from softwood black liquor by membrane filtration. Chem. Eng. Res. Des. 2013, 92, 1792–1800. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; García, A.; Coz, A.; Labidi, J. Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration. Sep. Purif. Technol. 2015, 152, 172–179. [Google Scholar] [CrossRef]
- Mota, I.F.; Pinto, P.R.; Ribeiro, A.M.; Loureiro, J.M.; Rodrigues, A.E. Downstream processing of an oxidized industrial kraft liquor by membrane fractionation for vanillin and syringaldehyde recovery. Sep. Purif. Technol. 2018, 197, 360–371. [Google Scholar] [CrossRef]
- Restolho, A.; Norberta, M.; Pinho, D.; Dina, M. Sugars and lignosulphonates recovery from eucalyptus spent sulphite liquor by membrane processes. Biomass Bioenergy 2009, 33, 1558–1566. [Google Scholar] [CrossRef]
- Toledano, A.; Serrano, L.; Balu, A.M.; Luque, R.; Pineda, A.; Labidi, J. Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds. ChemSusChem 2013, 6, 529–536. [Google Scholar] [CrossRef] [PubMed]
Characteristics | NF Membrane | UF Membranes | |
---|---|---|---|
Manufacturer | Microdyn-Nadir | Trisep | Trisep |
Model | NP010 | UF5 | UF10 |
Material | PES (effective layer) PP (support layer) | PES (effective layer) PP (support layer) | PES (effective layer) PP (support layer) |
Molecular weight cut-off (Da) | 1000–1200 | 5000 | 10,000 |
Maximum operation temperature (°C) | - | 45 | 45 |
Maximum operation pressure (bar) | 40 | 21 | 21 |
pH range | 0–14 | 1–12 | 1–12 |
NaCl rejection (%) | 10 | ||
Na2SO4 rejection (%) | 35–75 |
Permeability LP Values (m/s·bar) | |||
---|---|---|---|
Solution | NF Membrane | UF Membranes | |
NP010 | UF5 | UF10 | |
Pure water | 2.34 × 10−7 | 2.82 × 10−6 | 1.06 × 10−5 |
Pure water (used membrane) | 6.38 × 10−7 | ||
Kraft lignin | 1.59 × 10−7 | 7.25 × 10−7 | 9.69 × 10−7 |
Lignosulphonate | 1.53 × 10−7 | 4.16 × 10−7 | 6.92 × 10−7 |
Glucose | 1.71 × 10−7 | 9.27 × 10−7 | |
Glucose (virgin membrane) | 2.63 × 10−7 | ||
Xylose | 1.99 × 10−7 | 7.49 × 10−7 | |
Xylose (virgin membrane) | 2.58 × 10−7 | ||
Baseline Flow J0 Values (m/s) | |||
Pure water | 1.01 × 10−4 | ||
Kraft lignin | 5.15 × 10−6 | ||
Lignosulphonate | 1.65 × 10−6 |
Solute | Applied Pressure ΔP (bar) | Rejection (%) | ||
---|---|---|---|---|
NP010 | UF5 | UF10 | ||
Kraft lignin (KL) | 10 | - | 99.0 | 86.9 |
15 | - | 99.0 | 86.8 | |
20 | 99.0 | - | 88.2 | |
35 | 99.5 | - | - | |
Lignosulphonate (LS) | 10 | - | 95.0 | 74.9 |
15 | - | 94.9 | 77.9 | |
20 | 98.9 | 94.6 | 80.1 | |
35 | 98.9 | - | - | |
Glucose (G) | 10 | - | 5.1 | - |
15 | - | 2.0 | - | |
20 | 13.9 | 10.9 | - | |
35 | 40.6 | - | - | |
Xylose (X) | 10 | - | 0.36 | - |
15 | - | 0.25 | - | |
20 | 14.0 | 0.42 | - | |
35 | 20.0 | - | - |
Solute | SILM | NF Membrane | UF Membranes | |
---|---|---|---|---|
NP010 | UF5 | UF10 | ||
k Value (m/h) | Solute Passage (%) | |||
Kraft lignin (KL) | 0.71 × 10−3 | 1.0 | 1.0 | 13.2 |
Lignosulphonate (LS) | 0.67 × 10−3 | 1.2 | 5.1 | 22.1 |
Glucose (G) | 1.86 × 10−3 | 86.1 | 98.0 | 100.0 |
Xylose (X) | 1.76 × 10−3 | 86.0 | 99.8 | 100.0 |
Solute | SILM | NF Membrane | UF Membranes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NP010 | UF5 | UF10 | ||||||||||
αi/KL | αi/LS | αi/G | αi/KL | αi/LS | αi/G | αi/KL | αi/LS | αi/G | αi/KL | αi/LS | αi/G | |
Kraft lignin (KL) | - | - | - | - | - | - | - | - | - | - | - | - |
Lignosulphonate (LS) | 0.94 | - | - | 1.2 | - | - | 5.3 | - | - | 1.7 | - | - |
Glucose (G) | 2.63 | 2.80 | - | 88.8 | 74.9 | - | 101 | 19.2 | - | 7.6 | 4.5 | - |
Xylose (X) | 2.49 | 2.65 | 0.95 | 88.6 | 74.8 | 1.0 | 103 | 19.6 | 1.0 | 7.6 | 4.5 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abejón, R.; Rabadán, J.; Garea, A.; Irabien, A. Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides. Membranes 2020, 10, 29. https://doi.org/10.3390/membranes10020029
Abejón R, Rabadán J, Garea A, Irabien A. Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides. Membranes. 2020; 10(2):29. https://doi.org/10.3390/membranes10020029
Chicago/Turabian StyleAbejón, Ricardo, Javier Rabadán, Aurora Garea, and Angel Irabien. 2020. "Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides" Membranes 10, no. 2: 29. https://doi.org/10.3390/membranes10020029
APA StyleAbejón, R., Rabadán, J., Garea, A., & Irabien, A. (2020). Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides. Membranes, 10(2), 29. https://doi.org/10.3390/membranes10020029