Transport of Au(III) from HCl Medium across a Liquid Membrane Using R3NH+Cl−/Toluene Immobilized on a Microporous Hydrophobic Support: Optimization and Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Methods
2.2.1. Liquid-Liquid Extraction Experiments
2.2.2. SLM Experiments
3. Results and Discussion
- (i)
- the use of ionic liquid concentrations within the adequate range for the given metal-organic system. This practice avoided the use of an excessive and unusable ionic liquid concentration, which used to be the most expensive item of a process,
- (ii)
- to reduce the organic phase viscosity. This is important because it facilitates the phase separation in liquid-liquid experiments, and also in supported liquid membranes methodology, because in many systems, the increase of the organic phase viscosity tends to increase the membrane resistance to the metal transport.
3.1. Preparation of R3NH+Cl− Ionic Liquid
3.2. Gold(III) Extraction Equilibrium
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Schnoor, J.L.; Zeng, E.Y. E-Waste Recycling: Where Does It Go from Here? Environ. Sci. Technol. 2012, 46, 10861–10867. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Pan, M.-W.; Lo, S.-L. Hydrometallurgical metal recovery from waste printed circuit boards pretreated by microwave pyrolysis. Resour. Conserv. Recycl. 2020, 163, 105090. [Google Scholar] [CrossRef]
- Pokhrel, P.; Lin, S.-L.; Tsai, C.-T. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment. J. Environ. Manag. 2020, 276, 111276. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv. 2020, 10, 4300–4309. [Google Scholar] [CrossRef] [Green Version]
- Martinez, S.; Sastre, A.M.; Alguacil, F.J. Gold extraction equilibrium in the system Cyanex 921-HCl Au(III). Hydrometallurgy 1997, 46, 205–214. [Google Scholar] [CrossRef]
- Marsden, J.O.; House, C.I. Chemistry of Gold Extraction, 2nd ed.; SME: Litteton, CO, USA, 2006; ISBN 9780873352406. [Google Scholar]
- Choi, J.-W.; Song, M.-H.; Bediako, J.K.; Yun, Y.-S. Sequential recovery of gold and copper from bioleached wastewater using ion exchange resins. Environ. Pollut. 2020, 266, 115167. [Google Scholar] [CrossRef]
- Cyganowski, P. Synthesis of Adsorbents with Anion Exchange and Chelating Properties for Separation and Recovery of Precious Metals–A Review. Solvent Extr. Ion Exch. 2020, 38, 143–165. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, L.; Wang, W.; Yu, G.; Huang, J. Adsorptive recovery of Au(III) from aqueous solution using crosslinked polyethyleneimine resins. Chemosphere 2019, 241, 125122. [Google Scholar] [CrossRef]
- Santos, N.T.D.G.; Moraes, L.F.; Da Silva, M.G.C.; Vieira, M.G.A. Recovery of gold through adsorption onto sericin and alginate particles chemically crosslinked by proanthocyanidins. J. Clean. Prod. 2020, 253, 119925. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wieczorek, D. Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy 2018, 175, 359–366. [Google Scholar] [CrossRef]
- Kubota, F.; Kono, R.; Yoshida, W.; Sharaf, M.; Kolev, S.D.; Goto, M. Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep. Purif. Technol. 2019, 214, 156–161. [Google Scholar] [CrossRef]
- Tomizaki, K.-Y.; Okamoto, T.; Tonoda, T.; Imai, T.; Asano, M. Selective Gold Recovery from Homogenous Aqueous Solutions Containing Gold and Platinum Ions by Aromatic Amino Acid-Containing Peptides. Int. J. Mol. Sci. 2020, 21, 5060. [Google Scholar] [CrossRef] [PubMed]
- Boudesocque, S.; Mohamadou, A.; Conreux, A.; Marin, B.; Dupont, L. The recovery and selective extraction of gold and platinum by novel ionic liquids. Sep. Purif. Technol. 2019, 210, 824–834. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Q.; Geng, Y.; Sun, X.; Wu, D.; Yang, Y. Recovery of Au(III) from Acidic Chloride Media by Homogenous Liquid–Liquid Extraction with UCST-Type Ionic Liquids. ACS Sustain. Chem. Eng. 2019, 7, 19975–19983. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Geng, Y.; Wang, N.; Yang, Y. Gold(III) separation from acidic medium by amine-based ionic liquid. J. Mol. Liq. 2020, 304, 112735. [Google Scholar] [CrossRef]
- Wongsawa, T.; Traiwongsa, N.; Pancharoen, U.; Nootong, K. A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes. Hydrometallurgy 2020, 198, 105488. [Google Scholar] [CrossRef]
- Antuña-Nieto, C.; Rodríguez, E.; Lopez-Anton, M.A.; García, R.; Martínez-Tarazona, M.R. Noble metal-based sorbents: A way to avoid new waste after mercury removal. J. Hazard. Mater. 2020, 400, 123168. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Li, F.; Qi, X.; Jiang, B.; Kou, J.; Sun, C. Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. J. Hazard. Mater. 2020, 391, 122175. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Mo, X.; Zhou, S.; Zhang, P.; Xiong, B.; Liu, Y.; Huang, Y.; Li, H.; Tang, K. Highly efficient and selective recovery of Au(III) by a new metal-organic polymer. J. Hazard. Mater. 2019, 380, 120844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Huang, Z.; Wang, S.; Zhang, L.; Wang, C. Experimental and DFT study on the selective adsorption mechanism of Au(Ⅲ) using amidinothiourea-functionalized UiO-66-NH2. Microporous Mesoporous Mater. 2020, 294, 109905. [Google Scholar] [CrossRef]
- Zhou, S.; Mo, X.; Zhu, W.; Xu, W.; Tang, K.; Lei, Y. Selective adsorption of Au(III) with ultra-fast kinetics by a new metal-organic polymer. J. Mol. Liq. 2020, 319, 114125. [Google Scholar] [CrossRef]
- Alguacil, F. Non-dispersive extraction of gold(III) with ionic liquid Cyphos IL101. Sep. Purif. Technol. 2017, 179, 72–76. [Google Scholar] [CrossRef]
- Alguacil, F.J. Mechanistic investigation of facilitated transport of gold(III) from HCl media using ionic liquid Cyphos IL102 as carrier across a supported liquid membrane. Gold Bull. 2019, 52, 145–151. [Google Scholar] [CrossRef]
- Alguacil, F.J.; López, F.A. Permeation of AuCl4− Across a Liquid Membrane Impregnated with A324H+Cl− Ionic Liquid. Metals 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.; Rao, M.D.; Meshram, A.; Verma, H.R.; Singh, K.K. Potential of polymer inclusion membrane process for selective recovery of metal values from waste printed circuit boards: A review. J. Clean. Prod. 2020, 265, 121621. [Google Scholar] [CrossRef]
- Alguacil, F.J.; García-Díaz, I.; López, F.A.; Rodriguez, O.F. Removal of Cr(VI) and Au(III) from aqueous streams by the use of carbon nanoadsorption technology. Desalin. Water Treat. 2017, 63, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Alguacil, F.J. Adsorption of Gold(I) and Gold(III) Using Multiwalled Carbon Nanotubes. Appl. Sci. 2018, 8, 2264. [Google Scholar] [CrossRef] [Green Version]
- Borisov, R.V.; Belousov, O.V.; Zhizhaev, A.M. Deposition of Gold (III) from Hydrochloric Acid Solutions on Carbon Nanotubes under Hydrothermal Conditions. J. Sib. Fed. Univ. Chem. 2019, 494–502. [Google Scholar] [CrossRef]
- Bohrer, M.P. Diffusional boundary layer resistance for membrane transport. Ind. Eng. Chem. Fundam. 1983, 22, 72–78. [Google Scholar] [CrossRef]
- Pavón, S.; Fortuny, A.; Coll, M.; Bertau, M.; Sastre, A. Permeability dependencies on the carrier concentration and membrane viscosity for Y(III) and Eu(III) transport by using liquid membranes. Sep. Purif. Technol. 2020, 239, 116573. [Google Scholar] [CrossRef]
- Barbosa Filho, O.; Monhemius, A.J. Leaching of gold in thiocyanate solutions. Part I: Chemistry and thermodynamics. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall 1994, 103, C105–C110. [Google Scholar]
- Sastre, A.M.; Alguacil, F.J.; Alonso, M.; López, F.A.; López-Delgado, A. On Cadmium (II) Membrane?Based Extraction using Cyanex 923 as Carrier. Solvent Extr. Ion Exch. 2008, 26, 192–207. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Coedo, A.; Dorado, M.; Padilla, I. Phosphine oxide mediate transport: Modelling of mass transfer in supported liquid membrane transport of gold (III) using Cyanex 923. Chem. Eng. Sci. 2001, 56, 3115–3122. [Google Scholar] [CrossRef]
- Alguacil, F.J. Carrier-mediated gold transport in the system Cyanex 921–HCl–Au(III). Hydrometallurgy 2004, 71, 363–369. [Google Scholar] [CrossRef]
- Alguacil, F.J. Solvent Extraction of Au(III) by the Chloride Salt of the Amine Alamine 304 and Its Application to a Solid Supported Liquid Membrane System. Solvent Extr. Ion Exch. 2003, 21, 841–852. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Alonso, M.; Sastre, A.M. Facilitated supported liquid membrane transport of gold (I) and gold (III) using Cyanex® 921. J. Membr. Sci. 2005, 252, 237–244. [Google Scholar] [CrossRef]
- Huang, T.-C.; Juang, R.-S. Rate and mechanism of divalent metal transport through supported liquid membrane containing di(2-ethylhexyl) phosphoric acid as a mobile carrier. J. Chem. Technol. Biotechnol. 2007, 42, 3–17. [Google Scholar] [CrossRef]
Stirring Speed, min−1 | KAu × 103, cm/s |
---|---|
600 | 2.6 |
800 | 2.7 |
900 | 2.9 |
1000 | 3.2 |
1200 | 3.0 |
1500 | 3.1 |
1800 | 3.2 |
[Au]f,0, g/L | KAu × 103, cm/s | ª % Transport |
---|---|---|
0.01 | 3.2 | 86 |
0.03 | 2.0 | 78 |
0.05 | 2.0 | 70 |
0.08 | 1.7 | 67 |
0.10 | 1.5 | 61 |
0.15 | 1.4 | 57 |
Spectrum | Au (wt %) |
---|---|
1 | 100.00 |
2 | 100.00 |
3 | 100.00 |
Mean | 100.00 |
Standard deviation | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil, F.J.; Alcaraz, L.; Largo, O.R.; López, F.A. Transport of Au(III) from HCl Medium across a Liquid Membrane Using R3NH+Cl−/Toluene Immobilized on a Microporous Hydrophobic Support: Optimization and Modelling. Membranes 2020, 10, 432. https://doi.org/10.3390/membranes10120432
Alguacil FJ, Alcaraz L, Largo OR, López FA. Transport of Au(III) from HCl Medium across a Liquid Membrane Using R3NH+Cl−/Toluene Immobilized on a Microporous Hydrophobic Support: Optimization and Modelling. Membranes. 2020; 10(12):432. https://doi.org/10.3390/membranes10120432
Chicago/Turabian StyleAlguacil, Francisco J., Lorena Alcaraz, Olga R. Largo, and Félix A. López. 2020. "Transport of Au(III) from HCl Medium across a Liquid Membrane Using R3NH+Cl−/Toluene Immobilized on a Microporous Hydrophobic Support: Optimization and Modelling" Membranes 10, no. 12: 432. https://doi.org/10.3390/membranes10120432
APA StyleAlguacil, F. J., Alcaraz, L., Largo, O. R., & López, F. A. (2020). Transport of Au(III) from HCl Medium across a Liquid Membrane Using R3NH+Cl−/Toluene Immobilized on a Microporous Hydrophobic Support: Optimization and Modelling. Membranes, 10(12), 432. https://doi.org/10.3390/membranes10120432