Direct Measurements of Electroviscous Phenomena in Nafion Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions and Membranes
2.2. Electrochemical Flow Cell
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | Description | Units |
A | Membrane active area | m |
I | Electrical current | A |
normalized current; | ||
, | Hydrostatic pressure | Pa |
Flow rate | ||
Volumetric flow; | ||
normalized volumetric flow; | ||
Greek symbols | ||
EKEC figure of merit; | ||
Mass change | kg | |
Potential across the membrane | V | |
Logarithmic mean pressure difference | Pa | |
Membrane thickness | m | |
EKEC maximum efficiency; | ||
Hydraulic permeability; | m Pa s | |
Intrinsic hydraulic permeability; | m Pa s | |
Streaming potential coefficient | ||
Intrinsic streaming potential coefficient | ||
Density | kg m | |
Membrane (ionic) conductivity | S m | |
Apparent membrane (ionic) conductivity | S m |
References
- Morrison, F.A.; Osterle, J.F. Electrokinetic Energy Conversion in Ultrafine Capillaries. J. Chem. Phys. 1965, 43, 2111–2115. [Google Scholar] [CrossRef]
- Gross, R.J.; Osterle, J.F. Membrane Transport Characteristics of Ultrafine Capillaries. J. Chem. Phys. 1968, 49, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Burgreen, D.; Nakache, F.R. Electrokinetic Flow in Ultrafine Capillary Slits. J. Phys. Chem. 1964, 68, 1084–1091. [Google Scholar] [CrossRef]
- Burgreen, D.; Nakache, F.R. Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic System. J. Appl. Mech. 1965, 32, 675–679. [Google Scholar] [CrossRef]
- Levine, S.; Marriott, J.; Neale, G.; Epstein, N. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci. 1975, 52, 136–149. [Google Scholar] [CrossRef]
- Sbaï, M.; Fievet, P.; Szymczyk, A.; Aoubiza, B.; Vidonne, A.; Foissy, A. Streaming potential, electroviscous effect, pore conductivity and membrane potential for the determination of the surface potential of a ceramic ultrafiltration membrane. J. Membr. Sci. 2003, 215, 1–9. [Google Scholar] [CrossRef]
- Huisman, I.H.; Dutré, B.; Persson, K.M.; Trägårdh, G. Water permeability in ultrafiltration and microfiltration: Viscous and electroviscous effects. Desalination 1997, 113, 95–103. [Google Scholar] [CrossRef]
- Huisman, I.H.; José, P.P.; Calvo, I.; Hernández, A. Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J. Membr. Sci. 2000, 178, 79–92. [Google Scholar] [CrossRef]
- Huisman, I.H.; Trägårdh, G.; Trägårdh, C.; Pihlajamäki, A. Determining the zeta-potential of ceramic microfiltration membranes using the electroviscous effect. J. Membr. Sci. 1998, 147, 187–194. [Google Scholar] [CrossRef]
- Huisman, I.H.; Prádanos, P.; Hernández, A. Electrokinetic characterisation of ultrafiltration membranes by streaming potential, electroviscous effect, and salt retention. J. Membr. Sci. 2000, 178, 55–64. [Google Scholar] [CrossRef]
- Szymczyk, A.; Aoubiza, B.; Fievet, P.; Pagetti, J. Electrokinetic Phenomena in Homogeneous Cylindrical Pores. J. Colloid Interface Sci. 1999, 216, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Wall, S. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 119–124. [Google Scholar] [CrossRef]
- Østedgaard Munck, D.N.; Catalano, J.; Kristensen, M.B.; Bentien, A. Data on flow cell optimization for membrane-based electrokinetic energy conversion. Data Brief 2017, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Catalano, J.; Bentien, A.; Østedgaard Munck, D.N.; Kjelstrup, S. Efficiency of electrochemical gas compression, pumping and power generation in membranes. J. Membr. Sci. 2015, 478, 37–48. [Google Scholar] [CrossRef]
- Bowen, W.; Jenner, F. Electroviscous Effects in Charged Capillaries. J. Colloid Interface Sci. 1995, 173, 388–395. [Google Scholar] [CrossRef]
- Bentien, A.; Okada, T.; Kjelstrup, S. Evaluation of Nanoporous Polymer Membranes for Electrokinetic Energy Conversion in Power Applications. J. Phys. Chem. C 2013, 117, 1582–1588. [Google Scholar] [CrossRef]
- Kilsgaard, B.S.; Haldrup, S.; Catalano, J.; Bentien, A. High figure of merit for electrokinetic energy conversion in Nafion membranes. J. Power Sources 2014, 247, 235–242. [Google Scholar] [CrossRef]
- Haldrup, S.; Catalano, J.; Hansen, M.R.; Wagner, M.; Jensen, G.V.; Pedersen, J.S.; Bentien, A. High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes. Nano Lett. 2015, 15, 1158–1165. [Google Scholar] [CrossRef]
- Haldrup, S.; Catalano, J.; Hinge, M.; Jensen, G.V.; Pedersen, J.S.; Bentien, A. Tailoring Membrane Nanostructure and Charge Density for High Electrokinetic Energy Conversion Efficiency. ACS Nano 2016, 10, 2415–2423. [Google Scholar] [CrossRef]
- Kristensen, M.B.; Haldrup, S.; Christensen, J.R.; Catalano, J.; Bentien, A. Sulfonated poly(arylene thioether sulfone) cation exchange membranes with improved permselectivity/ion conductivity trade-off. J. Membr. Sci. 2016, 520, 731–739. [Google Scholar] [CrossRef]
- Østedgaard Munck, D.N.; Catalano, J.; Kristensen, M.B.; Bentien, A. Membrane-based electrokinetic energy conversion. Mater. Today Energy 2017, 5, 118–125. [Google Scholar] [CrossRef]
- Kristensen, M.B.; Catalano, J.; Haldrup, S.; Bělský, P.; Tomáš, M.; Bentien, A. Tuning the ion channel network of perfluorosulfonated membranes via a facile sacrificial porogen approach. J. Membr. Sci. 2018, 545, 275–283. [Google Scholar] [CrossRef]
- Catalano, J.; Hamelers, H.V.M.; Bentien, A.; Biesheuvel, P.M. Revisiting Morrison and Osterle 1965: The efficiency of membrane-based electrokinetic energy conversion. J. Phys. Condens. Matter 2016, 28, 324001. [Google Scholar] [CrossRef] [PubMed]
Membrane | N212 | N117 | NC | N-SPS30 | N-SPS30 | |
---|---|---|---|---|---|---|
LiI conc. | M | 1 | 1 | 1 | 1 | 0.3 |
iec | meq g | 0.95–1.01 | 0.95–1.01 | 0.94 ± 0.03 | 1.18 ± 0.02 | |
S m | 0.291 ± 0.001 | 0.637 ± 0.003 | 0.312 ± 0.006 | 0.830 ± 0.006 | 0.462 ± 0.002 | |
m | 60 | 175 | 92 | 264 | 264 | |
V Pa | 2.81 ± 0.01 | 2.60 ± 0.10 | 2.78 ± 0.04 | 2.76 ± 0.01 | 3.71 ± 0.01 | |
V Pa | 3.5 ± 0.4 | 1.3 ± 0.5 | 3.0 ± 0.5 | 3.5 ± 0.7 | 4.3 ± 0.5 | |
m Pa s | 1.98 ± 0.03 | 2.24 ± 0.07 | 1.44 ± 0.03 | 4.32 ± 0.11 | 4.47 ± 0.09 | |
m Pa s | 2.27 ± 0.03 | 2.46 ± 0.07 | 1.70 ± 0.03 | 5.12 ± 0.11 | 5.12 ± 0.09 | |
- | 1.15 | 1.10 | 1.18 | 1.19 | 1.15 | |
/ | -/% | 0.12/2.7 | 0.19/4.4 | 0.17/3.9 | 0.15/3.4 | 0.14/3.3 |
/ from | -/% | 0.18/4.1 | 0.05/1.2 | 0.20/4.5 | 0.24/5.3 | 0.19/4.4 |
/ from | -/% | 0.15/3.4 | 0.10/2.3 | 0.18/4.1 | 0.19/4.2 | 0.15/3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Østedgaard-Munck, D.N.; Catalano, J.; Bentien, A. Direct Measurements of Electroviscous Phenomena in Nafion Membranes. Membranes 2020, 10, 304. https://doi.org/10.3390/membranes10110304
Østedgaard-Munck DN, Catalano J, Bentien A. Direct Measurements of Electroviscous Phenomena in Nafion Membranes. Membranes. 2020; 10(11):304. https://doi.org/10.3390/membranes10110304
Chicago/Turabian StyleØstedgaard-Munck, David Nicolas, Jacopo Catalano, and Anders Bentien. 2020. "Direct Measurements of Electroviscous Phenomena in Nafion Membranes" Membranes 10, no. 11: 304. https://doi.org/10.3390/membranes10110304
APA StyleØstedgaard-Munck, D. N., Catalano, J., & Bentien, A. (2020). Direct Measurements of Electroviscous Phenomena in Nafion Membranes. Membranes, 10(11), 304. https://doi.org/10.3390/membranes10110304