Current Status of HIV-1 Vaccines
Abstract
:1. Introduction
2. Challenges of the HIV-1 Vaccine
2.1. Biological Perspective
2.2. Funding
2.3. A Brief History of HIV Vaccine Development
Name | Year Started and Country/Continent | Phase | Molecular Basis of Vaccine | Efficacy/Response | Relevant Information | NCT Number or Author |
---|---|---|---|---|---|---|
Vax 003 | 1999, Thailand | 3 | AIDSVAX B/E | No efficacy | Bivalent subunit vaccine, 2 Gp120 from clades B and E were combined and alum adjuvant added | NCT00006327 |
Vax 004 | 1998, North America and The Netherlands | 3 | AIDSVAX B/B | No efficacy | Bivalent subunit vaccine, 2 Gp120 from clade B were combined and alum adjuvant added | NCT00002441 |
RV 144 | 2003, Thailand | 3 | ALVAC-HIV and AIDSVAX B/E | 31.2% efficacy against HIV-1 acquisition | NA | NCT00223080 |
HVTN 502/Step and HVTN 503/Phambili | 2004, North and South America, Australia, Caribbean, and South Africa | 2b | MRKAd5 HIV-1 gag/pol/nef B | No efficacy | Both studies prematurely terminated. People with high titer to adenovirus were more likely to contract HIV. Uncircumcised men had a higher risk of contracting HIV [7,14,15]. | NCT00095576 and NCT00413725 |
2.4. Important Advances in Scientific Technology Impacting HIV Vaccine Development
2.5. Milestone Event
2.6. Setbacks Following RV144’s Modest Success
2.7. Broadly Neutralizing Antibodies and the Subsequent Antibody-Mediated Prevention (AMP) Trials
2.8. Gene Therapy Application to Induce Broadly Neutralizing Antibodies
2.9. Mosaic Vaccine Design, APPROACH, and HVTN 705
2.10. HIVconsv Vaccine
2.11. mRNA-Based Vaccine Technology for HIV
2.12. Future Directions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNAIDS. Global HIV & AIDS Statistics. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 14 July 2021).
- Rezaei, T.; Khalili, S.; Baradaran, B.; Mosafer, J.; Rezaei, S.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J. Control. Release 2019, 316, 116–137. [Google Scholar] [CrossRef]
- Fauci, A.S.; Lane, H.C. Four decades of HIV/AIDS—Much accomplished, much to do. N. Engl. J. Med. 2020, 383, 1–4. [Google Scholar] [CrossRef]
- Wang, H.-B.; Mo, Q.-H.; Yang, Z. HIV Vaccine Research: The Challenge and the Way Forward. J. Immunol. Res. 2015, 2015, 503978. [Google Scholar] [CrossRef]
- Hsu, D.C.; O’Connell, R.J. Progress in HIV vaccine development. Hum. Vaccines Immunother. 2017, 13, 1018–1030. [Google Scholar] [CrossRef]
- Ng’Uni, T.; Chasara, C.; Ndhlovu, Z.M. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front. Immunol. 2020, 11, 590780. [Google Scholar] [CrossRef] [PubMed]
- Esparza, J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013, 31, 3502–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanke, T. Aiming for protective T-cell responses: A focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev. Vaccines 2019, 18, 1029–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, D.R.; Gaiha, G.D.; Walker, B.D. CD8+ T cells in HIV control, cure and prevention. Nat. Rev. Immunol. 2020, 20, 471–482. [Google Scholar] [CrossRef]
- Stephenson, K.; Barouch, D.H. A global approach to HIV -1 vaccine development. Immunol. Rev. 2013, 254, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekker, L.-G.; Tatoud, R.; Dabis, F.; Feinberg, M.; Kaleebu, P.; Marovich, M.; Ndung’U, T.; Russell, N.; Johnson, J.; Luba, M.; et al. The complex challenges of HIV vaccine development require renewed and expanded global commitment. Lancet 2020, 395, 384–388. [Google Scholar] [CrossRef]
- Esparza, J. A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine. Front. Immunol. 2015, 6, 124. [Google Scholar] [CrossRef]
- Ross, A.L.; Bråve, A.; Scarlatti, G.; Manrique, A.; Buonaguro, L. Progress towards development of an HIV vaccine: Report of the AIDS Vaccine 2009 Conference. Lancet Infect. Dis. 2010, 10, 305–316. [Google Scholar] [CrossRef]
- Gray, G.E.; Laher, F.; Lazarus, E.; Ensoli, B.; Corey, L. Approaches to preventative and therapeutic HIV vaccines. Curr. Opin. Virol. 2016, 17, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Gray, G.; Buchbinder, S.; Duerr, A. Overview of STEP and Phambili trial results: Two phase IIb test-of-concept studies investigating the efficacy of MRK adenovirus type 5 gag/pol/nef subtype B HIV vaccine. Curr. Opin. HIV AIDS 2010, 5, 357–361. [Google Scholar] [CrossRef]
- Lu, S. Heterologous prime-boost vaccination. Curr. Opin. Virol. 2009, 21, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Excler, J.-L.; Kim, J.H. Novel prime-boost vaccine strategies against HIV-1. Expert Rev. Vaccines 2019, 18, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Mayr, A.; Hochstein-Mintzel, V.; Stickl, H. Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 1975, 105, 6–14. [Google Scholar] [CrossRef]
- Zolla-Pazner, S.; Michael, N.L.; Kim, J.H. A tale of four studies: HIV vaccine immunogenicity and efficacy in clinical trials. Lancet HIV 2021, 8, e449–e452. [Google Scholar] [CrossRef]
- Haynes, B.F.; Gilbert, P.B.; McElrath, M.J.; Zolla-Pazner, S.; Tomaras, G.D.; Alam, S.M.; Evans, D.T.; Montefiori, D.C.; Karnasuta, C.; Sutthent, R.; et al. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. N. Engl. J. Med. 2012, 366, 1275–1286. [Google Scholar] [CrossRef] [Green Version]
- Mu, Z.; Haynes, B.; Cain, D. HIV mRNA Vaccines—Progress and Future Paths. Vaccines 2021, 9, 134. [Google Scholar] [CrossRef]
- Scheid, J.F.; Mouquet, H.; Ueberheide, B.; Diskin, R.; Klein, F.; Oliveira, T.Y.K.; Pietzsch, J.; Fenyo, D.; Abadir, A.; Velinzon, K.; et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 2011, 333, 1633–1637. [Google Scholar] [CrossRef] [Green Version]
- Caskey, M.; Klein, F.; Lorenzi, J.C.C.; Seaman, M.S.; West, A.P., Jr.; Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid, J.F.; et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015, 522, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Lynch, R.M.; Boritz, E.; Coates, E.E.; DeZure, A.; Madden, P.; Costner, P.; Enama, M.E.; Plummer, S.; Holman, L.; Hendel, C.S.; et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 2015, 7, 319ra206. [Google Scholar] [CrossRef] [Green Version]
- Corey, L.; Gilbert, P.B.; Juraska, M.; Montefiori, D.C.; Morris, L.; Karuna, S.T.; Edupuganti, S.; Mgodi, N.M.; Decamp, A.C.; Rudnicki, E.; et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N. Engl. J. Med. 2021, 384, 1003–1014. [Google Scholar] [CrossRef]
- Priddy, F.H.; Lewis, D.J.M.; Gelderblom, H.C.; Hassanin, H.; Streatfield, C.; LaBranche, C.; Hare, J.; Cox, J.; Dally, L.; Bendel, D.; et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: A phase 1 randomised controlled trial. Lancet HIV 2019, 6, e230–e239. [Google Scholar] [CrossRef] [Green Version]
- Palesch, D.; Kirchhoff, F. First Steps toward a Globally Effective HIV/AIDS Vaccine. Cell 2013, 155, 495–497. [Google Scholar] [CrossRef] [Green Version]
- Barouch, D.H.; Tomaka, F.L.; Wegmann, F.; Stieh, D.J.; Alter, G.; Robb, M.L.; Michael, N.L.; Peter, L.; Nkolola, J.P.; Borducchi, E.N.; et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet 2018, 392, 232–243. [Google Scholar] [CrossRef]
- Fred Hutchinson Cancer Research Center. Experimental Phase 2b HIV Vaccine Regimen Provides Insufficient Protection in Preventing HIV. Available online: https://www.newswise.com/articles/experimental-phase-2b-hiv-vaccine-regimen-ineffective-in-preventing-hiv (accessed on 9 September 2021).
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- A Study to Assess Safety and Immunogenicity of Conserved Mosaic HIV-1 Vaccines. Available online: https://clinicaltrials.gov/ct2/show/NCT04586673 (accessed on 16 July 2021).
- Jones, L.D.; Moody, M.A.; Thompson, A.B. Innovations in HIV-1 Vaccine Design. Clin. Ther. 2020, 42, 499–514. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. Preliminary phase 1 results from an HIV vaccine candidate trial. Lancet Microbe 2021, 2, e95. [Google Scholar] [CrossRef]
- A Phase 1 Study to Evaluate the Safety and Immunogenicity of eOD-GT8 60mer mRNA Vaccine (mRNA-1644) and Core-g28v2 60mer mRNA Vaccine (mRNA-1644v2-Core). Available online: https://clinicaltrials.gov/ct2/show/NCT05001373 (accessed on 10 September 2021).
- Eisinger, R.W.; Lerner, A.M.; Fauci, A.S. HIV/AIDS in the era of COVID-19: A juxtaposition of two pandemics. J. Infect. Dis. 2021, jiab114. [Google Scholar] [CrossRef]
- Haynes, B.F. SARS-CoV-2 and HIV-1—A tale of two vaccines. Nat. Rev. Immunol. 2021, 21, 543–544. [Google Scholar] [CrossRef] [PubMed]
Name | Year Started and Country/Continent | Phase | Molecular Basis of Vaccine | Efficacy/Response or Completion Date | Relevant Comments | NCT Number or Author |
---|---|---|---|---|---|---|
HVTN 702 | 2016, South Africa | 2b/3 | ALVAC-HIV and subtype C gp120/MF59 | No efficacy | NCT02968849 | |
Antibody-Mediated Protection, HVTN 703 | 2016, sub-Saharan Africa | 2b | VRC01 broadly neutralizing monoclonal antibody infusion | Did not prevent HIV-1 acquisition | Similar to HVTN 704 but clinical participants were women | NCT02568215 |
Antibody-Mediated Protection, HVTN 704 | 2016, Brazil, Peru, Switzerland, USA | 2b | VRC01 broadly neutralizing monoclonal antibody infusion | Did not prevent HIV-1 acquisition | Similar to HVTN 703, but clinical participants were men who have sex with men and transgender women | NCT02716675 |
IAVI A003/CHOP HVDDT 001 | 2014, United Kingdom | 1 | rAAV1-PG9DP | Safe and tolerable, but antibody levels not detected in all participants | NCT01937455 | |
APPROACH | 2015, east Africa, South Africa, Thailand, and USA | ½ | Ad26.Mos.HIV and Clade C gp140 or MVA mosaic vaccine with gp140 | Safe and tolerable, efficacy will be assessed with HVTN 705 | NCT02315703 | |
Imbokodo, HVTN 705 | 2017, sub-Saharan Affrica | 2b | Ad26.Mos4.HIV and adjuvanted clade C gp140 and Mosaic gp140 protein | Completion date in 2022 | NCT03060629 | |
HVTN 706 | 2019, Europe, North, and South America | 3 | Ad26.Mos4.HIV and adjuvanted clade C gp140 and Mosaic gp140 protein | Completion date in 2022 | ||
CR108152 | 2016, USA and Rwanda | ½ | Ad26.Mos.HIV or Ad26.Mos4.HIV and clade C gp140 plus adjuvant | Completion date in 2023 | NCT02788045 | |
HIV-CORE 004 | 2014, Kenya | ½ | pSG2.HIVconsv DNA, MVA.HIVconsv and Ad35-GRIN | Safe and tolerable, all participants had HIVcons specific T cell responses | NCT02099994 | |
HIV-CORE 0052 | 2021, United Kingdom | 1 | ChAdOx1.tHIVconsv1, MVA.tHIVconsv3 (M3), or MVA.tHIVconsv4 (M4) | Completion date in 2022 | NCT04586673 | |
PrepVacc | 2020, Mozambique; South Africa; Tanzania; and Uganda | 2b | DNA-HIV-PT123 and AIDSVAX or 2 injections of CN54gp140 + MPLAL and MVA | Completion date in 2023 | All participants on PREP | NCT04066881 |
IAVI G001 | 2018, USA | 1 | eOD-GT8 60mer + AS01B/DPBS sucrose/IM | Results have not been published in peer reviewed journal | NCT03547245 | |
IAVI G002 | Estimated start date 2021, USA | 1 | Core-g28v2 60mer mRNA and eOD-GT8 60mer mRNA Vaccine | Completion date in 2023 | NCT05001373 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hargrave, A.; Mustafa, A.S.; Hanif, A.; Tunio, J.H.; Hanif, S.N.M. Current Status of HIV-1 Vaccines. Vaccines 2021, 9, 1026. https://doi.org/10.3390/vaccines9091026
Hargrave A, Mustafa AS, Hanif A, Tunio JH, Hanif SNM. Current Status of HIV-1 Vaccines. Vaccines. 2021; 9(9):1026. https://doi.org/10.3390/vaccines9091026
Chicago/Turabian StyleHargrave, Anna, Abu Salim Mustafa, Asma Hanif, Javed H. Tunio, and Shumaila Nida M. Hanif. 2021. "Current Status of HIV-1 Vaccines" Vaccines 9, no. 9: 1026. https://doi.org/10.3390/vaccines9091026
APA StyleHargrave, A., Mustafa, A. S., Hanif, A., Tunio, J. H., & Hanif, S. N. M. (2021). Current Status of HIV-1 Vaccines. Vaccines, 9(9), 1026. https://doi.org/10.3390/vaccines9091026