Differential Effect of Vaccine Effectiveness and Safety on COVID-19 Vaccine Acceptance across Socioeconomic Groups in an International Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. General Adult Vaccine Hesitancy
2.4. Socioeconomic and Demographic Factors
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 19 May 2021).
- Google News. Coronavirus (COVID-19)—Google News. 2020. Available online: https://news.google.com/covid19/map?hl=en-US&gl=US&ceid=US%3Aen (accessed on 24 May 2021).
- World Data. COVID-19 Data Explorer—Our World in Data. 2020. Available online: https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=2020-03-01..latest&pickerSort=desc&pickerMetric=total_deaths&hideControls=true&Metric=Confirmed+deaths&Interval=7-day+rolling+average&Relative+to+Population=true&Align+outbreaks=false&country=IND~USA~TWN~MYS~IDN~CHN (accessed on 24 May 2021).
- Rozek, L.S.; Jones, P.; Menon, A.; Hicken, A.; Apsley, S.; King, E.J. Understanding Vaccine Hesitancy in the Context of COVID-19: The Role of Trust and Confidence in a Seventeen-Country Survey. Int. J. Public Health 2021, 66, 48. [Google Scholar] [CrossRef]
- Robertson, E.; Reeve, K.S.; Niedzwiedz, C.L.; Moore, J.; Blake, M.; Green, M.; Katikireddi, S.V.; Benzeval, M.J. Predictors of COVID-19 vaccine hesitancy in the UK household longitudinal study. Brain Behav. Immun. 2021, 94, 41–50. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G.; Cai, X.P.; Deng, J.W.; Zheng, L.; Zhu, H.H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B 2020, 21, 343–360. [Google Scholar] [CrossRef]
- CSSE Johns Hopkins. COVID-19 Map—Johns Hopkins Coronavirus Resource Center. Johns Hopkins Coronavirus Resource Center. 2020. Available online: https://coronavirus.jhu.edu/map.html (accessed on 19 May 2021).
- Vaccines—COVID19 Vaccine Tracker. 2021. Available online: https://covid19.trackvaccines.org/vaccines/ (accessed on 19 May 2021).
- Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA J. Am. Med. Assoc. 2021, 325, 1318–1320. [Google Scholar] [CrossRef]
- DW News. Coronavirus: Germany′s CureVac Vaccine Only 47% Effective|News|DW|16.06.2021. 2021. Available online: https://www.dw.com/en/coronavirus-germanys-curevac-vaccine-only-47-effective/a-57929473 (accessed on 25 June 2021).
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Bright, B.; Babalola, C.P.; Sam-Agudu, N.A.; Onyeaghala, A.A.; Olatunji, A.; Aduh, U.; Sobande, P.O.; Crowell, T.A.; Tebeje, Y.K.; Phillip, S.; et al. COVID-19 preparedness: Capacity to manufacture vaccines, therapeutics and diagnostics in sub-Saharan Africa. Glob. Health 2021, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, I.M.; Strecher, V.J.; Becker, M.H. Social Learning Theory and the Health Belief Model. Health Educ. Q 1988, 15, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.; Robinson, K.; Vallée-Tourangeau, G. The 5As: A practical taxonomy for the determinants of vaccine uptake. Vaccine 2016, 34, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Ten Threats to Global Health in 2019. 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 19 May 2021).
- Schwarzinger, M.; Watson, V.; Arwidson, P.; Alla, F.; Luchini, S. COVID-19 vaccine hesitancy in a representative working-age population in France: A survey experiment based on vaccine characteristics. Lancet Public Health 2021, 6, e210–e221. [Google Scholar] [CrossRef]
- Soares, P.; Rocha, J.V.; Moniz, M.; Gama, A.; Laires, P.A.; Pedro, A.R.; Dias, S.; Leite, A.; Nunes, C. Factors Associated with COVID-19 Vaccine Hesitancy. Vaccines 2021, 9, 300. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020, 27, 225–228. [Google Scholar] [CrossRef]
- Shekhar, R.; Sheikh, A.B.; Upadhyay, S.; Singh, M.; Kottewar, S.; Mir, H.; Barrett, E.; Pal, S. COVID-19 vaccine acceptance among health care workers in the united states. Vaccines 2021, 9, 119. [Google Scholar] [CrossRef]
- Fu, C.; Wei, Z.; Pei, S.; Li, S.; Sun, X.; Liu, P. Acceptance and preference for COVID-19 vaccination in health-care workers (HCWs). MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Li, J.B.; Yang, A.; Dou, K.; Wang, L.X.; Zhang, M.C.; Lin, X.Q. Chinese public’s knowledge, perceived severity, and perceived controllability of COVID-19 and their associations with emotional and behavioural reactions, social participation, and precautionary behaviour: A national survey. BMC Public Health 2020, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.S.; Serper, M.; Opsasnick, L.; O’Conor, R.M.; Curtis, L.; Benavente, J.Y.; Wismer, G.; Batio, S.; Eifler, M.; Zheng, P.; et al. Awareness, Attitudes, and Actions Related to COVID-19 Among Adults With Chronic Conditions at the Onset of the U.S. Outbreak: A Cross-sectional Survey. Ann. Intern. Med. 2020, 173, 100–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, A.L.; Sheinfeld Gorin, S.; Boulton, M.L.; Glover, B.A.; Morenoff, J.D. Effect of vaccine effectiveness and safety on COVID-19 vaccine acceptance in Detroit, Michigan, July 2020. Hum. Vaccin. Immunother. 2021, 17, 2940–2945. [Google Scholar] [CrossRef]
- Sallam, M. Covid-19 vaccine hesitancy worldwide: A concise systematic review of vaccine acceptance rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Azlan, A.A.; Hamzah, M.R.; Sern, T.J.; Ayub, S.H.; Mohamad, E. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS ONE 2020, 15, e0233668. [Google Scholar] [CrossRef]
- Akel, K.B.; Masters, N.B.; Shih, S.-F.; Lu, Y.; Wagner, A.L. Modification of a vaccine hesitancy scale for use in adult vaccinations in the United States and China. Hum. Vaccines Immunother. 2021, 1–8. [Google Scholar] [CrossRef]
- Gidengil, C.; Lieu, T.A.; Payne, K.; Rusinak, D.; Messonnier, M.; Prosser, L.A. Parental and societal values for the risks and benefits of childhood combination vaccines. Vaccine 2012, 30, 3445–3452. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wagner, A.L.; Ji, J.; Huang, Z.; Zikmund-Fisher, B.J.; Boulton, M.L.; Ren, J.; Prosser, L.A. A conjoint analysis of stated vaccine preferences in Shanghai, China. Vaccine 2020, 38, 1520–1525. [Google Scholar] [CrossRef]
- Masters, N.B.; Eisenberg, M.C.; Delamater, P.L.; Kay, M.; Boulton, M.L.; Zelner, J. Fine-scale spatial clustering of measles nonvaccination that increases outbreak potential is obscured by aggregated reporting data. Proc. Natl. Acad. Sci. USA 2020, 117, 28506–28514. [Google Scholar] [CrossRef]
- Kreps, S.; Dasgupta, N.; Brownstein, J.S.; Hswen, Y.; Kriner, D.L. Public attitudes toward COVID-19 vaccination: The role of vaccine attributes, incentives, and misinformation. NPJ Vaccines 2021, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tu, P.; Beitsch, L.M. Confidence and receptivity for covid-19 vaccines: A rapid systematic review. Vaccines 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Motta, M. Can a COVID-19 vaccine live up to Americans’ expectations? A conjoint analysis of how vaccine characteristics influence vaccination intentions. Soc. Sci. Med. 2021, 272, 113642. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, Y.; Watanapongvanich, S.; Yuktadatta, P.; Putthinun, P.; Lartey, S.T.; Khan, M.S.R. Willing or hesitant? A socioeconomic study on the potential acceptance of COVID-19 vaccine in Japan. Int. J. Environ. Res. Public Health 2021, 18, 4864. [Google Scholar] [CrossRef]
- Neumann-Böhme, S.; Varghese, N.E.; Sabat, I.; Barros, P.P.; Brouwer, W.; van Exel, J.; Schreyögg, J.; Stargardt, T. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur. J. Health Econ. 2020, 21, 977–982. [Google Scholar] [CrossRef]
USA | China | Taiwan | Malaysia | Indonesia | India | |
---|---|---|---|---|---|---|
Overall | N = 4050 | N = 2797 | N = 1278 | N = 1492 | N = 1507 | N = 1762 |
Wave | ||||||
Mar 2020 | 691 (20.0%) | 1070 (33.3%) | -- | -- | -- | -- |
Jun 2020 | 655 (19.9%) | -- | -- | -- | -- | -- |
Aug 2020 | 782 (20.0%) | 788 (33.3%) | 645 (50.0%) | 757 (50.0%) | 716 (49.8%) | 805 (50.0%) |
Oct 2020 | 936 (20.0%) | -- | -- | -- | -- | -- |
Nov 2020 | 986 (20.0%) | 939 (33.3%) | 633 (50.0%) | 735 (50.0%) | 791 (50.2%) | 957 (50.0%) |
Age (years) | ||||||
18–34 | 1057 (33.8%) | 963 (34.1%) | 523 (28.8%) | 710 (42.8%) | 702 (42.1%) | 795 (43.2%) |
35–54 | 1400 (35.0%) | 1165 (39.2%) | 607 (43.2%) | 670 (40.1%) | 676 (40.5%) | 666 (38.1%) |
≥55 | 1593 (31.2%) | 669 (26.7%) | 148 (28.0%) | 112 (17.1%) | 129 (17.4%) | 301 (18.8%) |
Gender | ||||||
Female | 2128 (50.6%) | 1386 (48.8%) | 701 (52.1%) | 713 (48.3%) | 713 (49.1%) | 824 (48.2%) |
Male | 1922 (49.4%) | 1411 (51.2%) | 577 (47.9%) | 779 (51.7%) | 749 (50.1%) | 938 (51.8%) |
Income | ||||||
<$2000 equivalent | 891 (22.8%) | 276 (10.5%) | 114 (11.0%) | 391 (28.6%) | 908 (61.7%) | 922 (53.6%) |
≥$2000 equivalent | 3155 (77.2%) | 2489 (89.5%) | 1113 (89.1%) | 1100 (71.4%) | 599 (38.3%) | 840 (46.5%) |
Vaccine hesitant | ||||||
No | 2371 (57.4%) | 1985 (72.9%) | 395 (40.0%) | 904 (59.3%) | 863 (57.0%) | 1200 (68.3%) |
Yes | 1626 (42.6%) | 758 (27.1%) | 593 (60.0%) | 588 (40.7%) | 644 (43.0%) | 562 (31.7%) |
50% VE, 20% Fever Risk | 50% VE, 5% Fever Risk | 95% VE, 20% Fever Risk | 95% VE, 5% Fever Risk | |
---|---|---|---|---|
USA, Mar 2020 | ref | 1.59 (0.94, 2.67) | 2.67 (1.37, 5.20) | 3.81 (1.97, 7.36) |
USA, Jun 2020 | ref | 0.97 (0.60, 1.57) | 1.88 (1.06, 3.31) | 2.33 (1.35, 4.02) |
USA, Aug 2020 | ref | 1.22 (0.77, 1.94) | 1.70 (1.00, 2.90) | 1.64 (0.98, 2.73) |
USA, Oct 2020 | ref | 0.86 (0.58, 1.29) | 1.95 (1.28, 2.97) | 3.64 (2.36, 5.63) |
USA, Nov 2020 | ref | 1.12 (0.76, 1.64) | 2.53 (1.71, 3.74) | 3.10 (2.07, 4.63) |
China, Mar 2020 | ref | 0.82 (0.38, 1.78) | 0.86 (0.39, 1.90) | 0.93 (0.41, 2.11) |
China, Aug 2020 | ref | 1.03 (0.53, 2.01) | 2.51 (1.17, 5.37) | 3.23 (1.44, 7.23) |
China, Nov 2020 | ref | 0.84 (0.49, 1.46) | 2.00 (1.04, 3.84) | 2.93 (1.44, 5.98) |
Taiwan, Aug 2020 | ref | 0.89 (0.49, 1.63) | 3.08 (1.51, 6.25) | 2.13 (1.10, 4.11) |
Taiwan, Nov 2020 | ref | 1.08 (0.63, 1.85) | 3.76 (2.11, 6.73) | 4.40 (2.41, 8.02) |
Malaysia, Aug 2020 | ref | 1.27 (0.74, 2.18) | 2.76 (1.49, 5.10) | 2.81 (1.48, 5.34) |
Malaysia, Nov 2020 | ref | 1.31 (0.74, 2.31) | 3.48 (1.97, 6.16) | 4.53 (2.38, 8.62) |
Indonesia, Aug 2020 | ref | 1.11 (0.55, 2.24) | 4.82 (2.31, 10.06) | 2.13 (0.97, 4.64) |
Indonesia, Nov 2020 | ref | 0.85 (0.49, 1.48) | 2.21 (1.05, 4.68) | 1.05 (0.56, 1.97) |
India, Aug 2020 | ref | 0.97 (0.45, 2.07) | 3.40 (1.34, 8.64) | 3.29 (1.26, 8.61) |
India, Nov 2020 | ref | 0.96 (0.53, 1.76) | 3.15 (1.57, 6.32) | 2.31 (1.32, 4.02) |
August Wave OR (95% CI) | November Wave OR (95% CI) | p-Value of Interaction a | |
---|---|---|---|
Vaccine profile | <0.0001 | ||
50% VE, 20% fever risk | ref | ref | |
50% VE, 5% fever risk | 1.09 (0.99, 1.21) | 1.00 (0.91, 1.10) | |
95% VE, 20% fever risk | 2.88 (1.97, 4.21) | 2.61 (1.97, 3.45) | |
95% VE, 5% fever risk | 2.39 (1.76, 3.23) | 2.62 (1.66, 4.13) | |
Vaccine hesitant | 0.5575 | ||
No | ref | ref | |
Yes | 0.26 (0.19, 0.36) | 0.25 (0.18, 0.34) | |
Age (years) | 0.627 | ||
18–34 | 1.46 (1.02, 2.08) | 1.35 (0.85, 2.14) | |
35–54 | 1.28 (1.07, 1.54) | 1.10 (0.71, 1.69) | |
≥55 | ref | ref | |
Gender | 0.9546 | ||
Male | ref | ref | |
Female | 0.93 (0.64, 1.37) | 0.93 (0.70, 1.25) | |
Income | 0.7793 | ||
<$2000 equivalent | ref | ref | |
≥$2000 equivalent | 1.06 (0.74, 1.51) | 1.12 (0.66, 1.88) |
50% VE, 20% Fever Risk | 50% VE, 5% Fever Risk | 95% VE, 20% Fever Risk | 95% VE, 5% Fever Risk | p-Value a | |
---|---|---|---|---|---|
Overall | 75% (63%, 80%) | 76% (66%, 83%) | 89% (81%, 94%) | 88% (81%, 92%) | |
By wave | <0.0001 | ||||
Aug 2020 | 77% (68%, 84%) | 78% (68%, 85%) | 89% (82%, 94%) | 88% (80%, 93%) | |
Nov 2020 | 71% (56%, 82%) | 71% (59%, 81%) | 86% (78%, 92%) | 87% (80%, 91%) | |
By age | <0.0001 | ||||
18–34 | 76% (68%, 82%) | 80% (76%, 84%) | 87% (76%, 93%) | 88% (81%, 93%) | |
35–54 | 73% (62%, 82%) | 74% (59%, 85%) | 88% (80%, 93%) | 87% (80%, 92%) | |
≥55 | 72% (51%, 86%) | 67% (54%, 77%) | 90% (84%, 94%) | 85% (78%, 90%) | |
By gender | 0.1864 | ||||
Male | 73% (60%, 83%) | 75% (60%, 85%) | 87% (76%, 94%) | 85% (74%, 92%) | |
Female | 75% (64%, 84%) | 75% (67%, 80%) | 88% (83%, 92%) | 89% (85%, 92%) | |
By income | <0.0001 | ||||
<$2000 equivalent | 75% (64%, 83%) | 75% (64%, 84%) | 86% (75%, 93%) | 83% (72%, 90%) | |
≥$2000 equivalent | 74% (60%, 84%) | 74% (63%, 83%) | 89% (81%, 94%) | 89% (82%, 94%) | |
By vaccine hesitancy | <0.0001 | ||||
No | 84% (77%, 89%) | 85% (76%, 90%) | 95% (92%, 97%) | 96% (92%, 98%) | |
Yes | 61% (47%, 73%) | 64% (53%, 74%) | 78% (66%, 87%) | 75% (64%, 84%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerekes, S.; Ji, M.; Shih, S.-F.; Chang, H.-Y.; Harapan, H.; Rajamoorthy, Y.; Singh, A.; Kanwar, S.; Wagner, A.L. Differential Effect of Vaccine Effectiveness and Safety on COVID-19 Vaccine Acceptance across Socioeconomic Groups in an International Sample. Vaccines 2021, 9, 1010. https://doi.org/10.3390/vaccines9091010
Kerekes S, Ji M, Shih S-F, Chang H-Y, Harapan H, Rajamoorthy Y, Singh A, Kanwar S, Wagner AL. Differential Effect of Vaccine Effectiveness and Safety on COVID-19 Vaccine Acceptance across Socioeconomic Groups in an International Sample. Vaccines. 2021; 9(9):1010. https://doi.org/10.3390/vaccines9091010
Chicago/Turabian StyleKerekes, Stefania, Mengdi Ji, Shu-Fang Shih, Hao-Yuan Chang, Harapan Harapan, Yogambigai Rajamoorthy, Awnish Singh, Shailja Kanwar, and Abram L. Wagner. 2021. "Differential Effect of Vaccine Effectiveness and Safety on COVID-19 Vaccine Acceptance across Socioeconomic Groups in an International Sample" Vaccines 9, no. 9: 1010. https://doi.org/10.3390/vaccines9091010
APA StyleKerekes, S., Ji, M., Shih, S.-F., Chang, H.-Y., Harapan, H., Rajamoorthy, Y., Singh, A., Kanwar, S., & Wagner, A. L. (2021). Differential Effect of Vaccine Effectiveness and Safety on COVID-19 Vaccine Acceptance across Socioeconomic Groups in an International Sample. Vaccines, 9(9), 1010. https://doi.org/10.3390/vaccines9091010