A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Reagents
2.3. Immunization
2.4. Interferon-γ Enzyme-Linked Immunospot (ELISPOT) Assay
2.5. Flow Cytometry Intracellular Cytokine Staining
2.6. Statistical Analysis
3. Results
3.1. SARS-CoV-2 S391–405 Peptide Facilitates IFN-γ Production of CD8 T Cells in Splenocytes from Adjuvanted SARS-CoV-2 Spike RBD-Immunized Mice
3.2. SARS-CoV-2 S395–404 Acts as the MHC Class I H-2Kb/Db-Restricted Minimal CTL Epitope of SARS-CoV-2 Spike RBD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.; Normile, D. New SARS-like virus in China triggers alarm. Science 2020, 367, 234–235. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report—62. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200322-sitrep-62-covid-19.pdf?sfvrsn=f7764c46_2 (accessed on 22 March 2020).
- Mullard, A. COVID-19 vaccine development pipeline gears up. Lancet 2020, 395, 1751–1752. [Google Scholar] [CrossRef]
- Graham, B.S. Rapid COVID-19 vaccine development. Science 2020, 368, 945–946. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Appay, V.; Douek, D.C.; Price, D.A. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 2008, 14, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.; Zhou, Y.; Sun, J.; Liu, X.; Zhang, J.; Mei, X.; Zhong, J.; Zhao, J.; Ran, P. COVID-19 Severity Correlates with Weaker T-Cell Immunity, Hypercytokinemia, and Lung Epithelium Injury. Am. J. Respir. Crit. Care Med. 2020, 202, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schafer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Smith, T.R.F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X.; Yan, J.; Gary, E.N.; Walker, S.N.; Schultheis, K.; Purwar, M.; et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020, 11, 2601. [Google Scholar] [CrossRef]
- van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020, 586, 578–582. [Google Scholar] [CrossRef]
- Muraoka, D.; Situo, D.; Sawada, S.I.; Akiyoshi, K.; Harada, N.; Ikeda, H. Identification of a dominant CD8(+) CTL epitope in the SARS-associated coronavirus 2 spike protein. Vaccine 2020, 38, 7697–7701. [Google Scholar] [CrossRef]
- Golden, J.W.; Cline, C.R.; Zeng, X.; Garrison, A.R.; Carey, B.D.; Mucker, E.M.; White, L.E.; Shamblin, J.D.; Brocato, R.L.; Liu, J.; et al. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 2020, 5. [Google Scholar] [CrossRef]
- Johansen, M.D.; Irving, A.; Montagutelli, X.; Tate, M.D.; Rudloff, I.; Nold, M.F.; Hansbro, N.G.; Kim, R.Y.; Donovan, C.; Liu, G.; et al. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol. 2020, 13, 877–891. [Google Scholar] [CrossRef]
- Oladunni, F.S.; Park, J.G.; Pino, P.A.; Gonzalez, O.; Akhter, A.; Allue-Guardia, A.; Olmo-Fontanez, A.; Gautam, S.; Garcia-Vilanova, A.; Ye, C.; et al. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat. Commun. 2020, 11, 6122. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.S.; Bailey, A.L.; Kafai, N.M.; Nair, S.; McCune, B.T.; Yu, J.; Fox, J.M.; Chen, R.E.; Earnest, J.T.; Keeler, S.P.; et al. SARS-CoV-2 infection in the lungs of human ACE2 transgenic mice causes severe inflammation, immune cell infiltration, and compromised respiratory function. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ip, P.P.; Nijman, H.W.; Daemen, T. Epitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative Cytotoxic T Lymphocyte Epitopes. Vaccines 2015, 3, 203–220. [Google Scholar] [CrossRef][Green Version]
- Zhou, M.; Xu, D.; Li, X.; Li, H.; Shan, M.; Tang, J.; Wang, M.; Wang, F.S.; Zhu, X.; Tao, H.; et al. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes. J. Immunol. 2006, 177, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Hudrisier, D.; Oldstone, M.B.; Gairin, J.E. The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2D(b) and H-2K(b) molecules. Virology 1997, 234, 62–73. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Min, L.; Sun, Q. Antibodies and Vaccines Target RBD of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 671633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.N.; Li, X.F.; Deng, Y.Q.; Zhao, H.; Huang, Y.J.; Yang, G.; Huang, W.J.; Gao, P.; Zhou, C.; Zhang, R.R.; et al. A Thermostable mRNA Vaccine against COVID-19. Cell 2020, 182, 1271–1283.e1216. [Google Scholar] [CrossRef]
- Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Guler, A.; et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021, 592, 283–289. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586, 572–577. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, W.; Xia, S.; Gu, C.; Wang, X.; Wang, Q.; Zhou, J.; Wu, Y.; Cai, X.; Qu, D.; et al. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct. Target Ther. 2020, 5, 282. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Fett, C.; Zhao, J.; Meyerholz, D.K.; Perlman, S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 2014, 88, 11034–11044. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, K.; Yang, B.; Xu, Y.; Wu, C. CD8+ T cell response in HLA-A*0201 transgenic mice is elicited by epitopes from SARS-CoV S protein. Vaccine 2010, 28, 6666–6674. [Google Scholar] [CrossRef] [PubMed]
- Habel, J.R.; Nguyen, T.H.O.; van de Sandt, C.E.; Juno, J.A.; Chaurasia, P.; Wragg, K.; Koutsakos, M.; Hensen, L.; Jia, X.; Chua, B.; et al. Suboptimal SARS-CoV-2-specific CD8(+) T cell response associated with the prominent HLA-A*02:01 phenotype. Proc. Natl. Acad. Sci. USA 2020, 117, 24384–24391. [Google Scholar] [CrossRef] [PubMed]
- Golding, H.; Khurana, S.; Zaitseva, M. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? The Importance of Bridging Studies and Species-Independent Correlates of Protection. Cold Spring Harb. Perspect. Biol. 2018, 10. [Google Scholar] [CrossRef][Green Version]
- Sims, S.; Willberg, C.; Klenerman, P. MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev. Vaccines 2010, 9, 765–774. [Google Scholar] [CrossRef]
Peptide ID | Start | End | Sequence |
---|---|---|---|
1 | 321 | 335 | QPTESIVRFPNITNL |
2 | 326 | 340 | IVRFPNITNLCPFGE |
3 | 331 | 345 | NITNLCPFGEVFNAT |
4 | 336 | 350 | CPFGEVFNATRFASV |
5 | 341 | 355 | VFNATRFASVYAWNR |
6 | 346 | 360 | RFASVYAWNRKRISN |
7 | 351 | 365 | YAWNRKRISNCVADY |
8 | 356 | 370 | KRISNCVADYSVLYN |
9 | 361 | 375 | CVADYSVLYNSASFS |
10 | 366 | 380 | SVLYNSASFSTFKCY |
11 | 371 | 385 | SASFSTFKCYGVSPT |
12 | 376 | 390 | TFKCYGVSPTKLNDL |
13 | 381 | 395 | GVSPTKLNDLCFTNV |
14 | 386 | 400 | KLNDLCFTNVYADSF |
15 | 391 | 405 | CFTNVYADSFVIRGD |
16 | 396 | 410 | YADSFVIRGDEVRQI |
17 | 401 | 415 | VIRGDEVRQIAPGQT |
18 | 406 | 420 | EVRQIAPGQTGKIAD |
19 | 411 | 425 | APGQTGKIADYNYKL |
20 | 416 | 430 | TKIADYNYKLPDDFT |
21 | 421 | 435 | YNYKLPDDFTGCVIA |
22 | 426 | 440 | PDDFTGCVIAWNSNN |
23 | 431 | 445 | GCVIAWNSNNLDSKV |
24 | 436 | 450 | WNSNNLDSKVGGNYN |
25 | 441 | 455 | LDSKVGGNYNYLYRL |
26 | 446 | 460 | GGNYNYLYRLFRKSN |
27 | 451 | 465 | YLYRLFRKSNLKPFE |
28 | 456 | 470 | FRKSNLKPFERDIST |
29 | 461 | 475 | LKPFERDISTEIYQA |
30 | 466 | 480 | RDISTEIYQAGSTPC |
31 | 471 | 485 | EIYQAGSTPCNGVEG |
32 | 476 | 490 | GSTPCNGVEGFNCYF |
33 | 481 | 495 | NGVEGFNCYFPLQSY |
34 | 486 | 500 | FNCYFPLQSYGFQPT |
35 | 491 | 505 | PLQSYGFQPTNGVGY |
36 | 496 | 510 | GFQPTNGVGYQPYRV |
37 | 501 | 515 | NGVGYQPYRVVVLSF |
38 | 506 | 520 | QPYRVVVLSFELLHA |
39 | 511 | 525 | VVLSFELLHAPATVC |
40 | 516 | 530 | ELLHAPATVCGPKKS |
41 | 521 | 535 | PATVCGPKKSTNLVK |
42 | 526 | 540 | CGKKSTNLVKNKCVN |
Peptide ID | Start | End | Sequence |
---|---|---|---|
15-8-1 | 391 | 398 | CFTNVYAD |
15-8-2 | 392 | 399 | FTNVYADS |
15-8-3 | 393 | 400 | TNVYADSF |
15-8-4 | 394 | 401 | NVYADSFV |
15-8-5 | 395 | 402 | VYADSFVI |
15-8-6 | 396 | 403 | YADSFVIR |
15-8-7 | 397 | 404 | ADSFVIRG |
15-8-8 | 398 | 405 | DSFVIRGD |
15-9-1 | 391 | 399 | CFTNVYADS |
15-9-2 | 392 | 400 | FTNVYADSF |
15-9-3 | 393 | 401 | TNVYADSFV |
15-9-4 | 394 | 402 | NVYADSFVI |
15-9-5 | 395 | 403 | VYADSFVIR |
15-9-6 | 396 | 404 | YADSFVIRG |
15-9-7 | 397 | 405 | ADSFVIRGD |
15-10-1 | 391 | 400 | CFTNVYADSF |
15-10-2 | 392 | 401 | FTNVYADSFV |
15-10-3 | 393 | 402 | TNVYADSFVI |
15-10-4 | 394 | 403 | NVYADSFVIR |
15-10-5 | 395 | 404 | VYADSFVIRG |
15-10-6 | 396 | 405 | YADSFVIRGD |
15-11-1 | 391 | 401 | CFTNVYADSFV |
15-11-2 | 392 | 402 | FTNVYADSFVI |
15-11-3 | 393 | 403 | TNVYADSFVIR |
15-11-4 | 394 | 404 | NVYADSFVIRG |
15-11-5 | 395 | 405 | VYADSFVIRGD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Kim, E.; Lee, J.-S.; Poo, H. A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Vaccines 2021, 9, 641. https://doi.org/10.3390/vaccines9060641
Yang J, Kim E, Lee J-S, Poo H. A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Vaccines. 2021; 9(6):641. https://doi.org/10.3390/vaccines9060641
Chicago/Turabian StyleYang, Jihyun, Eunjin Kim, Jong-Soo Lee, and Haryoung Poo. 2021. "A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein" Vaccines 9, no. 6: 641. https://doi.org/10.3390/vaccines9060641