Confidence, Acceptance and Willingness to Pay for the COVID-19 Vaccine among Migrants in Shanghai, China: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Instruments
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Acceptance, Willingness to Pay and Confidence of COVID-19 Vaccine
3.3. Factors Associated with Acceptance and Willingness to Pay for COVID-19 Vaccine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 21 April 2021).
- Helmy, Y.A.; Fawzy, M.; Elaswad, A.; Sobieh, A.; Kenney, S.P.; Shehata, A.A. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J. Clin. Med. 2020, 9, 1225. [Google Scholar] [CrossRef] [PubMed]
- Criteria for COVID-19 Vaccine Prioritization. Available online: https://www.who.int/publications/m/item/criteria-for-covid-19-vaccine-prioritization (accessed on 21 April 2021).
- Understanding Vaccination Progress. Available online: https://origin-coronavirus.jhu.edu/vaccines/international (accessed on 21 April 2021).
- China Approves Its Homegrown COVID-19 Vaccine for Widespread Use. Available online: https://www.npr.org/sections/coronavirus-live-updates/2020/12/31/952269135/china-approves-its-homegrown-covid-19-vaccine-for-widespread-use (accessed on 31 December 2020).
- Nuño, M.; Chowell, G.; Gumel, A. Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands. J. R. Soc. Interface 2006, 4, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Du Châtelet, I.P.; Antona, D.; Freymuth, F.; Muscat, M.; Halftermeyer-Zhou, F.; Maine, C.; Floret, D.; Lévy-Bruhl, D. Spotlight on measles 2010: Update on the ongoing measles outbreak in France, 2008–2010. Eurosurveillance 2010, 15, 19656. [Google Scholar] [CrossRef]
- De Serres, G.; Markowski, F.; Toth, E.; Landry, M.; Auger, D.; Mercier, M.; Bélanger, P.; Turmel, B.; Arruda, H.; Boulianne, N.; et al. Largest measles epidemic in North America in a decade—Quebec, Canada, 2011: Contribution of suscep-tibility, serendipity, and superspreading events. J. Infect. Dis. 2013, 207, 990–998. [Google Scholar] [CrossRef]
- Oostvogel, P.; Van Der Avoort, H.; Mulders, M.; Van Loon, A.; Spaendonck, M.C.-V.; Rümke, H.; Van Steenis, G.; Van Wijngaarden, J. Poliomyelitis outbreak in an unvaccinated community in the Netherlands, 1992–1993. Lancet 1994, 344, 665–670. [Google Scholar] [CrossRef]
- Falagas, M.E.; Zarkadoulia, E. Factors associated with suboptimal compliance to vaccinations in children in developed countries: A systematic review. Curr. Med. Res. Opin. 2008, 24, 1719–1741. [Google Scholar] [CrossRef]
- Leask, J. Target the fence-sitters. Nat. Cell Biol. 2011, 473, 443–445. [Google Scholar] [CrossRef]
- Leask, J.; Kinnersley, P.; Jackson, C.; Cheater, F.; Bedford, H.; Rowles, G. Communicating with parents about vaccination: A framework for health professionals. BMC Pediatr. 2012, 12, 154. [Google Scholar] [CrossRef]
- Ten Threats to Global Health in 2019. 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 10 January 2019).
- Larson, H.J.; Jarrett, C.; Schulz, W.S.; Chaudhuri, M.; Zhou, Y.; Dube, E.; Schuster, M.; MacDonald, N.E.; Wilson, R. Measuring vaccine hesitancy: The development of a survey tool. Vaccine 2015, 33, 4165–4175. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020, 1–4. [Google Scholar] [CrossRef]
- Fisher, K.A.; Bloomstone, S.J.; Walder, J.; Crawford, S.; Fouayzi, H.; Mazor, K.M. Attitudes toward a Potential SARS-CoV-2 Vaccine: A Survey of U.S. Adults. Ann. Intern. Med. 2020. [Google Scholar] [CrossRef]
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef]
- Pogue, K.; Jensen, J.L.; Stancil, C.K.; Ferguson, D.G.; Hughes, S.J.; Mello, E.J.; Burgess, R.; Berges, B.K.; Quaye, A.; Poole, B.D. Influences on Attitudes Regarding Potential COVID-19 Vaccination in the United States. Vaccines 2020, 8, 582. [Google Scholar] [CrossRef]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Neumann-Böhme, S.; Varghese, N.E.; Sabat, I.; Barros, P.P.; Brouwer, W.; Van Exel, J.; Schreyögg, J.; Stargardt, T. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur. J. Health Econ. 2020, 21, 977–982. [Google Scholar] [CrossRef]
- Wang, J.; Jing, R.; Lai, X.; Zhang, H.; Lyu, Y.; Knoll, M.D.; Fang, H. Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. Vaccines 2020, 8, 482. [Google Scholar] [CrossRef]
- Yang, M.; Dijst, M.; Helbich, M. Mental Health among Migrants in Shenzhen, China: Does it Matter Whether the Migrant Population is Identified by Hukou or Birthplace? Int. J. Environ. Res. Public Health 2018, 15, 2671. [Google Scholar] [CrossRef]
- Yu, C.; Lou, C.; Cheng, Y.; Cui, Y.; Lian, Q.; Wang, Z.; Gao, E.; Wang, L. Young internal migrants’ major health issues and health seeking barriers in Shanghai, China: A qualitative study. BMC Public Health 2019, 19, 336. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Stanton, B.; Fang, X. The influence of social stigma and discriminatory experience on psychological distress and quality of life among rural-to-urban migrants in China. Soc. Sci. Med. 2010, 71, 84–92. [Google Scholar] [CrossRef]
- Wen, M.; Zheng, Z.; Niu, J. Psychological distress of rural-to-urban migrants in two Chinese cities: Shenzhen and Shanghai. Asian Popul. Stud. 2016, 13, 1–20. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Gorback, C.; Redding, S.J. JUE Insight: How much does COVID-19 increase with mobility? Evidence from New York and four other U.S. cities. J. Urban Econ. 2020, 103292. [Google Scholar] [CrossRef] [PubMed]
- Shanghai Statistical Bulletin on National Economic and Social Development 2019. Available online: http://tjj.sh.gov.cn/tjgb/20200329/05f0f4abb2d448a69e4517f6a6448819.html (accessed on 9 March 2020).
- Questionaire Star. Available online: www.wjx.cn (accessed on 21 April 2021).
- Wechat (Tencent’s Messaging Service App). Available online: https://baike.baidu.com/item/%E5%BE%AE%E4%BF%A1/3905974?fr=aladdin (accessed on 21 April 2021).
- Wong, L.P.; Alias, H.; Wong, P.-F.; Lee, H.Y.; Abubakar, S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum. Vaccines Immunother. 2020, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dubé, E.; Laberge, C.; Guay, M.; Bramadat, P.; Roy, R.; Bettinger, J.A. Vaccine hesitancy: An overview. Hum. Vaccines Immunother. 2013, 9, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.J.; De Figueiredo, A.; Xiahong, Z.; Schulz, W.S.; Verger, P.; Johnston, I.G.; Cook, A.R.; Jones, N.S. The State of Vaccine Confidence 2016: Global Insights Through a 67-Country Survey. EBioMedicine 2016, 12, 295–301. [Google Scholar] [CrossRef]
- Dodd, R.H.; Cvejic, E.; Bonner, C.; Pickles, K.; McCaffery, K.J.; Ayre, J.; Batcup, C.; Copp, T.; Cornell, S.; Dakin, T.; et al. Willingness to vaccinate against COVID-19 in Australia. Lancet Infect. Dis. 2021, 21, 318–319. [Google Scholar] [CrossRef]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef]
- Mheidly, N.; Fares, J. Leveraging media and health communication strategies to overcome the COVID-19 infodemic. J. Public Health Policy 2020, 41, 410–420. [Google Scholar] [CrossRef]
- Considerations for Wearing Masks. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover-guidance.html (accessed on 19 April 2021).
- Tu, S.; Sun, F.Y.; Chantler, T.; Zhang, X.; Jit, M.; Han, K.; Rodewald, L.; Du, F.; Yu, H.; Hou, Z.; et al. Caregiver and service provider vaccine confidence following the Changchun Changsheng vaccine incident in China: A cross-sectional mixed methods study. Vaccine 2020, 38, 6882–6888. [Google Scholar] [CrossRef]
- Haque, A.; Pant, A.B. Efforts at COVID-19 Vaccine Development: Challenges and Successes. Vaccines 2020, 8, 739. [Google Scholar] [CrossRef]
- Mahase, E. Covid-19: Oxford researchers halt vaccine trial while adverse reaction is investigated. BMJ 2020, 370, 3525. [Google Scholar] [CrossRef]
- García, L.Y.; Cerda, A.A. Contingent assessment of the COVID-19 vaccine. Vaccine 2020, 38, 5424–5429. [Google Scholar] [CrossRef]
- Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Rabi, T.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ. 2020, 730, 138996. [Google Scholar] [CrossRef]
- Fishman, J.; Lushin, V.; Mandell, D.S. Predicting implementation: Comparing validated measures of intention and as-sessing the role of motivation when designing behavioral interventions. Implement. Sci. Commun. 2020, 1, 81. [Google Scholar] [CrossRef]
Characteristics | Total Sample, N (%) | COVID-19 Vaccine Acceptance | p-Value 1 | |
---|---|---|---|---|
Accept, N (Row%) | Hesitant, N (Row%) | |||
Total | 2126 | 1894 (89.09) | 232 (10.91) | - |
Gender | ||||
Male | 1070 (50.33) | 957 (89.44) | 113 (10.56) | 0.601 |
Female | 1056 (49.67) | 937 (88.73) | 119 (11.27) | |
Age (years) | ||||
≤25 | 491 (23.10) | 433 (88.19) | 58 (11.81) | <0.001 |
26–35 | 987 (46.43) | 905 (91.69) | 82 (8.31) | |
36–45 | 375 (17.64) | 337 (89.87) | 38 (10.13) | |
>45 | 273 (12.84) | 219 (80.22) | 54 (19.78) | |
Marital status | ||||
Single | 620 (29.16) | 549 (88.55) | 71 (11.45) | 0.406 |
Married | 1441 (67.78) | 1290 (89.52) | 151 (10.48) | |
Divorced or widow | 65 (3.06) | 55 (84.62) | 10 (15.38) | |
Number of family members | ||||
1 | 292 (13.73) | 254 (86.99) | 38 (13.01) | 0.022 |
2 | 455 (21.40) | 404 (88.79) | 51 (11.21) | |
3 | 654 (30.76) | 599 (91.59) | 55 (8.41) | |
4 | 355 (16.70) | 321 (90.42) | 34 (9.58) | |
≥5 | 370 (17.40) | 316 (85.41) | 54 (14.59) | |
Education | ||||
Primary school or below | 94 (4.42) | 70 (74.47) | 24 (25.53) | <0.001 |
Middle school | 459 (21.54) | 381 (83.19) | 77 (16.81) | |
High school | 584 (27.47) | 531 (90.92) | 53 (9.08) | |
Junior college | 592 (27.85) | 543 (91.72) | 49 (8.28) | |
Bachelor degree or above | 398 (18.72) | 369 (92.71) | 29 (7.29) | |
Monthly personal income (Chinese Yuan) | ||||
≤2500 | 204 (9.60) | 167 (81.86) | 37 (18.14) | 0.001 |
2501–5000 | 585 (27.52) | 513 (87.69) | 72 (12.31) | |
5001–7500 | 726 (34.15) | 654 (90.08) | 72 (9.92) | |
7501–10,000 | 347 (16.32) | 314 (90.49) | 33 (9.51) | |
>10,000 | 264 (12.42) | 246 (93.18) | 18 (6.82) | |
Years of local residence | ||||
≤0.5 | 257 (12.09) | 233 (90.66) | 24 (9.34) | <0.001 |
0.5–1 | 283 (13.31) | 259 (91.52) | 24 (8.48) | |
1–2 | 440 (20.70) | 409 (92.95) | 31 (7.05) | |
2–5 | 481 (22.62) | 440 (91.48) | 41 (8.52) | |
>5 | 665 (31.28) | 553 (83.16) | 112 (16.84) | |
Workplace | ||||
Food market or supermarket | 334 (15.71) | 256 (76.65) | 78 (23.35) | <0.001 |
Small service industry such as catering or express delivery | 514 (24.18) | 464 (90.27) | 50 (9.73) | |
Manufacturing industry such as factory | 266 (12.51) | 238 (89.47) | 28 (10.53) | |
Company or government agency | 768 (36.12) | 724 (94.27) | 44 (5.73) | |
Unemployed | 105 (4.94) | 92 (87.62) | 13 (12.38) | |
Others | 139 (6.54) | 120 (86.33) | 19 (13.67) | |
Frequency of contact with local residents | ||||
Frequent | 1157 (54.42) | 1053 (91.01) | 104 (8.99) | 0.002 |
Not frequent | 969 (45.58) | 841 (86.79) | 128 (13.21) | |
Self-rated health status | ||||
Good | 1705 (80.20) | 1545 (90.62) | 160 (9.38) | <0.001 |
Fair or poor | 421 (19.80) | 349 (82.90) | 72 (17.10) |
Variables (Reference) | Logistic Regression for Vaccine Acceptance (Accept vs. Hesitant) | Ordered Logistic Regression for Willingness to Pay | ||
---|---|---|---|---|
Basic Model | Additional Model | BASIC Model | Additional Model | |
Female | 1.07 (0.79–1.45) | 1.05 (0.75–1.47) | 1.28 (1.09–1.51) ** | 1.29 (1.10–1.51) ** |
Age (≤25, years) | ||||
26–35 | 1.42 (0.91–2.23) | 1.47 (0.90–2.40) | 0.77 (0.61–0.97) * | 0.73 (0.58–0.92) ** |
36–45 | 1.64 (0.92–2.92) | 1.59 (0.85–3.00) | 0.83 (0.62–1.12) | 0.79 (0.59–1.06) |
>45 | 1.30 (0.71–2.36) | 1.56 (0.80–3.03) | 0.60 (0.43–0.85) ** | 0.61 (0.43–0.86) ** |
Marital status (single) | ||||
Married | 1.45 (0.93–2.26) | 1.18 (0.72–1.92) | 0.99 (0.79–1.24) | 0.98 (0.78–1.23) |
Divorced or widow | 0.85 (0.38–1.90) | 1.08 (0.44–2.64) | 1.40 (0.86–2.27) | 1.44 (0.88–2.35) |
Number of family members (1) | ||||
2 | 1.37 (0.83–2.25) | 1.28 (0.74–2.23) | 1.16 (0.88–1.5) | 1.03 (0.78–1.36) |
3 | 1.41 (0.87–2.28) | 1.12 (0.65–1.92) | 1.30 (1.00–1.68) * | 1.14 (0.88–1.48) |
4 | 1.42 (0.83–2.43) | 1.28 (0.71–2.33) | 1.33 (1.00–1.77) | 1.17 (0.87–1.56) |
≥5 | 0.97 (0.59–1.59) | 0.95 (0.55–1.66) | 1.55 (1.16–2.06) ** | 1.42 (1.06–1.89)* |
Education (primary school or below) | ||||
Middle school | 1.11 (0.62–1.97) | 1.04 (0.54–2.02) | 0.92 (0.59–1.44) | 0.93 (0.60–1.46) |
High school | 1.69 (0.90–3.18) | 1.57 (0.77–3.20) | 0.97 (0.61–1.52) | 0.94 (0.60–1.48) |
Junior college | 1.33 (0.67–2.62) | 1.26 (0.58–2.71) | 0.91 (0.57–1.46) | 0.88 (0.55–1.41) |
Bachelor degree or above | 1.40 (0.66–2.94) | 1.64 (0.71–3.80) | 0.70 (0.43–1.14) | 0.70 (0.43–1.15) |
Monthly personal income (≤2500 Chinese Yuan) | ||||
2501–5000 | 1.38 (0.86–2.20) | 1.37 (0.80–2.32) | 1.29 (0.96–1.74) | 1.25 (0.93–1.68) |
5001–7500 | 1.32 (0.81–2.15) | 1.23 (0.71–2.14) | 2.12 (1.56–2.88) ** | 2.03 (1.49–2.76) ** |
7501–10,000 | 1.39 (0.79–2.46) | 1.01 (0.54–1.90) | 3.68 (2.62–5.17) ** | 3.34 (2.37–4.70) ** |
>10,000 | 1.87 (0.96–3.64) | 1.64 (0.78–3.44) | 4.07 (2.82–5.89) ** | 3.96 (2.73–5.74) ** |
Years of local residence (≤0.5 years) | ||||
0.5–1 | 0.84 (0.45–1.56) | 0.79 (0.40–1.57) | 1.31 (0.97–1.77) | 1.27 (0.94–1.72) |
1–2 | 0.94 (0.53–1.69) | 0.91 (0.48–1.73) | 1.33 (1.01–1.76) * | 1.31 (1.00–1.74) |
2–5 | 0.58 (0.33–1.04) | 0.59 (0.31–1.11) | 1.08 (0.81–1.44) | 1.03 (0.77–1.37) |
>5 | 0.37 (0.22–0.64) ** | 0.43 (0.24–0.80) ** | 0.94 (0.71–1.24) | 0.98 (0.74–1.29) |
Workplace (food market or supermarket) | ||||
Small service industry | 2.41 (1.53–3.78) ** | 2.18 (1.32–3.62) ** | 1.10 (0.84–1.45) | 0.96 (0.73–1.27) |
Manufacturing industry | 2.20 (1.32–3.67) ** | 1.99 (1.11–3.58) * | 0.75 (0.55–1.02) | 0.68 (0.50–0.93) * |
Company or government agency | 4.03 (2.49–6.52) ** | 3.13 (1.83–5.35) ** | 0.85 (0.65–1.11) | 0.78 (0.60–1.03) |
Unemployed | 2.18 (1.07–4.44) * | 1.64 (0.76–3.55) | 0.74 (0.48–1.13) | 0.67 (0.43–1.02) |
Others | 1.65 (0.90–3.03) | 1.37 (0.69–2.70) | 0.97 (0.67–1.41) | 0.94 (0.65–1.37) |
Frequent contact with local residents | 1.79 (1.32–2.43) ** | 1.48 (1.05–2.09) * | 1.61 (1.37–1.89) ** | 1.48 (1.26–1.75) ** |
Good self-rated health | 1.78 (1.29–2.45) ** | 1.40 (0.98–2.00) | 1.27 (1.05–1.55) * | 1.12 (0.92–1.36) |
High susceptibility of COVID-19 | 1.59 (0.91–2.80) | 1.56 (1.25–1.95) ** | ||
Confident in importance of COVID-19 vaccine | 8.71 (5.89–12.89) ** | 1.88 (1.40–2.51) ** | ||
Confident in safety of COVID-19 vaccine | 1.80 (1.24–2.61) ** | 1.06 (0.86–1.32) | ||
Confident in effectiveness of COVID-19 vaccine | 2.66 (1.83–3.87) ** | 1.91 (1.52–2.39) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Francis, M.R.; Zhang, R.; Wang, Q.; Xia, A.; Lu, L.; Yang, B.; Hou, Z. Confidence, Acceptance and Willingness to Pay for the COVID-19 Vaccine among Migrants in Shanghai, China: A Cross-Sectional Study. Vaccines 2021, 9, 443. https://doi.org/10.3390/vaccines9050443
Han K, Francis MR, Zhang R, Wang Q, Xia A, Lu L, Yang B, Hou Z. Confidence, Acceptance and Willingness to Pay for the COVID-19 Vaccine among Migrants in Shanghai, China: A Cross-Sectional Study. Vaccines. 2021; 9(5):443. https://doi.org/10.3390/vaccines9050443
Chicago/Turabian StyleHan, Kaiyi, Mark R. Francis, Ruiyun Zhang, Qian Wang, Aichen Xia, Linyao Lu, Bingyi Yang, and Zhiyuan Hou. 2021. "Confidence, Acceptance and Willingness to Pay for the COVID-19 Vaccine among Migrants in Shanghai, China: A Cross-Sectional Study" Vaccines 9, no. 5: 443. https://doi.org/10.3390/vaccines9050443
APA StyleHan, K., Francis, M. R., Zhang, R., Wang, Q., Xia, A., Lu, L., Yang, B., & Hou, Z. (2021). Confidence, Acceptance and Willingness to Pay for the COVID-19 Vaccine among Migrants in Shanghai, China: A Cross-Sectional Study. Vaccines, 9(5), 443. https://doi.org/10.3390/vaccines9050443