Antibody Responses to SARS-CoV-2 Infection—Comparative Determination of Seroprevalence in Two High-Throughput Assays versus a Sensitive Spike Protein ELISA
Abstract
:1. Introduction
2. Methods
2.1. Patients and Study Design
2.2. Anti-SARS-CoV-2 Assays
2.3. Procedures
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. PHU Study: Comparison between Abbott and TBS
3.2. DGH Study: Evaluation of Sensitivity and Specificity between Roche and Abbott
3.3. DGH Abbott–Roche Comparison Consistent with PHU Study Discordant Range
3.4. Definition of Thresholds Harmonising Abbott, TBS, and Roche Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centre for Systems and Science Engineering at John Hopkins University. COVID-19 Dashboard. 2020. Available online: https://coronavirus.jhu.edu/map.html (accessed on 3 July 2021).
- Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.R.; Ainsworth, M.; Anand, R.; Andersson, M.I.; Auckland, K.; Baillie, J.K.; Barnes, E.; Beer, S.; Bell, J.I.; Berry, T.; et al. Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel. Wellcome Open Res. 2020, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N. Engl. J. Med. 2021, 384, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Abbott. Architect Anti-SARS-CoV-2 IgG Test. Available online: https://www.fda.gov/media/137383/download (accessed on 8 February 2021).
- Roche. Elecsys Anti-SARS-CoV-2 Test. Available online: https://www.fda.gov/media/137605/download (accessed on 8 February 2021).
- Mueller, L.; Ostermann, P.N.; Walker, A.; Wienemann, T.; Mertens, A.; Adams, O.; Andree, M.; Hauka, S.; Luebke, N.; Keitel, V.; et al. Sensitivity of commercial 52 Anti-SARS-CoV-2 serological assays in a high-prevalence setting. medRxiv 2020. [Google Scholar] [CrossRef]
- Park, S.W.; Cornforth, D.M.; Dushoff, J.; Weitz, J.S. The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak. Epidemics 2020, 31, 100392. [Google Scholar] [CrossRef] [PubMed]
- Faustini, S.E.; Jossi, S.E.; Perez-Toledo, M.; Shields, A.M.; Allen, J.D.; Watanabe, Y.; Newby, M.L.; Cook, A.; Willcox, C.R.; Salim, M.; et al. Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection. medRxiv 2020. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Public Health England. Coronavirus (COVID-19): Guidance. 2020. Available online: https://www.gov.uk/government/collections/coronavirus-covid-19-list-of-guidance (accessed on 27 January 2021).
- Johansson, M.A.; Quandelacy, T.M.; Kada, S.; Prasad, P.V.; Steele, M.; Brooks, J.T.; Slayton, R.B.; Biggerstaff, M.; Butler, J.C. SARS-CoV-2 Transmission From People Without COVID-19 Symptoms. JAMA Netw. Open 2021, 4, e2035057. [Google Scholar] [CrossRef] [PubMed]
- Manalac, J.; Yee, J.; Calayag, K.; Nguyen, L.; Patel, P.M.; Zhou, D.; Shi, R.Z. Evaluation of Abbott anti-SARS-CoV-2 CMIA IgG and Euroimmun ELISA IgG/IgA assays in a clinical lab. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 510, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.; Pepper, G.; Wener, M.H.; Fink, S.L.; Morishima, C.; Chaudhary, A.; Jerome, K.R.; Mathias, P.C.; Greninger, A.L. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J. Clin. Microbiol. 2020, 58, e00941-20. [Google Scholar] [CrossRef] [PubMed]
- Meschi, S.; Colavita, F.; Bordi, L.; Matusali, G.; Lapa, D.; Amendola, A.; Vairo, F.; Ippolito, G.; Capobianchi, M.R.; Castilletti, C. Performance evaluation of Abbott ARCHITECT SARS-CoV-2 IgG immunoassay in comparison with indirect immunofluorescence and virus microneutralization test. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2020, 129, 104539. [Google Scholar] [CrossRef] [PubMed]
- Riley, S.; Eales, O.; Walters, C.E.; Wang, H.; Ainslie, K.E.; Atchinson, C.; Fronterre, C.; Diggle, P.J.; Ashby, D.; Donnelly, C.A.; et al. REACT-1 round 7 interim report: Fall in prevalence of swab-positivity in England during national lockdown. Medrxiv 2020. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O.; et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N. Engl. J. Med. 2020, 383, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- UK Medicines and Healthcare products Regulatory Agency. Target Product Profile: Enzyme Immunoassay (EIA) Antibody Tests to Help Determine If People Have Antibodies to SARS-CoV-2. 2020. Available online: https://www.gov.uk/government/publications/how-tests-and-testing-kits-for-coronavirus-covid-19-work/target-product-profile-enzyme-immunoassay-eia-antibody-tests-to-help-determine-if-people-have-antibodies-to-sars-cov-2 (accessed on 7 February 2021).
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; de Larrea, N.F.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
Parameter | Within 58 Days Post-PCR/Symptom Onset | >100 Days Post-PCR/Symptom Onset | ||
---|---|---|---|---|
Abbott | Roche | Abbott | Roche | |
Sensitivity | 97.4% (95% CI: 86.8–99.8%) | 77.3% (95% CI: 56.6–89.9%) | 100% (95% CI: 85.1–100%) | |
Specificity | 80.0% (95% CI: 60.9– 91.1%) | 83.3% (95% CI: 43.7–99.2%) | ||
PPV | 0.88 (95% CI: 0.75–0.95) | 0.94 (95% CI: 0.74–0.99) | 0.96 (95% CI: 0.79–0.99) | |
NPV | 0.95 (95% CI: 0.77–0.99) | 0.50 (95% CI: 0.24–0.76) | 1.00 (0.57–1.00) | |
LR | 4.87 | 4.64 | 6.00 | |
ƙ-Cohen | 1.000 SE: 0.000 | 0.462 SE: 0.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanraj, D.; Bicknell, K.; Bhole, M.; Webber, C.; Taylor, L.; Whitelegg, A. Antibody Responses to SARS-CoV-2 Infection—Comparative Determination of Seroprevalence in Two High-Throughput Assays versus a Sensitive Spike Protein ELISA. Vaccines 2021, 9, 1310. https://doi.org/10.3390/vaccines9111310
Mohanraj D, Bicknell K, Bhole M, Webber C, Taylor L, Whitelegg A. Antibody Responses to SARS-CoV-2 Infection—Comparative Determination of Seroprevalence in Two High-Throughput Assays versus a Sensitive Spike Protein ELISA. Vaccines. 2021; 9(11):1310. https://doi.org/10.3390/vaccines9111310
Chicago/Turabian StyleMohanraj, Dinesh, Kelly Bicknell, Malini Bhole, Caroline Webber, Lorna Taylor, and Alison Whitelegg. 2021. "Antibody Responses to SARS-CoV-2 Infection—Comparative Determination of Seroprevalence in Two High-Throughput Assays versus a Sensitive Spike Protein ELISA" Vaccines 9, no. 11: 1310. https://doi.org/10.3390/vaccines9111310