Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing and Analysis
2.3. Annotation
3. Results
3.1. High-Frequency SNP Variation
3.2. Amino Acid Residues Crucial for MERS-CoV Entry
3.3. Amino Acid Residues as Sites for N-Glycosylation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bermingham, A.; Chand, M.; Brown, C.; Aarons, E.; Tong, C.; Langrish, C.; Hoschler, K.; Brown, K.; Galiano, M.; Myers, R.; et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Eurosurveillance 2012, 17, 20290. [Google Scholar] [CrossRef]
- Assiri, A.; McGeer, A.; Perl, T.M.; Price, C.S.; Al Rabeeah, A.A.; Cummings, D.A.; Alabdullatif, Z.N.; Assad, M.; Almulhim, A.; Makhdoom, H.; et al. Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus. N. Engl. J. Med. 2013, 369, 407–416. [Google Scholar] [CrossRef]
- Zaki, A.; Van Boheemen, S.; Bestebroer, T.; Osterhaus, A.; Fouchier, R. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. MERS Situation Update, January 2020. Available online: http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-january-2020.html (accessed on 1 September 2021).
- Raj, V.S.; Farag, E.A.; Reusken, C.B.; Lamers, M.M.; Pas, S.D.; Voermans, J.; Smits, S.L.; Osterhaus, A.D.; Al-Mawlawi, N.; Al-Romaihi, H.E.; et al. Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014. Emerg. Infect. Dis. 2014, 20, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Haagmans, B.L.; Al Dhahiry, S.H.S.; Reusken, C.B.E.M.; Raj, V.S.; Galiano, M.; Myers, R.; Godeke, G.-J.; Jonges, M.; Farag, E.; Diab, A.; et al. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation. Lancet Infect. Dis. 2013, 14, 140–145. [Google Scholar] [CrossRef][Green Version]
- Aleanizy, F.S.; Mohmed, N.; Alqahtani, F.Y.; Mohamed, R.A.E.H. Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: A retrospective study. BMC Infect. Dis. 2017, 17, 1–7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lam, T.T.-Y.; Jia, N.; Zhang, Y.-W.; Shum, M.H.-H.; Jiang, J.-F.; Zhu, H.C.; Tong, Y.-G.; Shim, Y.-X.; Ni, X.-B.; Liao, Y.-S.; et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhong, N.; Zheng, B.; Li, Y.; Poon, L.; Xie, Z.; Chan, K.; Li, P.; Tan, S.; Chang, Q.; Xie, J.; et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003, 362, 1353–1358. [Google Scholar] [CrossRef][Green Version]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.; Zaki, A.; Fouchier, R.; et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013, 495, 251–254. [Google Scholar] [CrossRef][Green Version]
- Fehmann, H.C.; Göke, R.; Göke, B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr. Rev. 1995, 16, 390–410. [Google Scholar] [CrossRef]
- Saksena, N.; Bonam, S.R.; Miranda-Saksena, M. Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Front. Genet. 2021, 12, 581726. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, J.; Martin, W.; Kallianpur, A.; Chung, M.K.; Jehi, L.; Sharifi, N.; Erzurum, S.; Eng, C.; Cheng, F. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020, 18, 1–8. [Google Scholar] [CrossRef]
- Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Prokscha, A.; Naim, H.Y.; Müller, M.A.; Drosten, C.; Pöhlmann, S.; Hoffmann, M. Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 2020, 9, 155–168. [Google Scholar] [CrossRef][Green Version]
- Leist, S.R.; Cockrell, A.S. Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome. Methods Mol. Biol. 2020, 2099, 137–159. [Google Scholar]
- Barlan, A.; Zhao, J.; Sarkar, M.; Li, K.; McCray, P.; Perlman, S.; Gallagher, T. Receptor Variation and Susceptibility to Middle East Respiratory Syndrome Coronavirus Infection. J. Virol. 2014, 88, 4953–4961. [Google Scholar] [CrossRef][Green Version]
- Saudi Mendeliome Group. Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol. 2015, 16, 134. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abouelhoda, M.; Sobahy, T.; El-Kalioby, M.; Patel, N.; Shamseldin, H.; Monies, D.; Al-Tassan, N.; Ramzan, K.; Imtiaz, F.; Shaheen, R.; et al. Clinical genomics can facilitate countrywide estimation of autosomal recessive disease burden. Genet. Med. 2016, 18, 1244–1249. [Google Scholar] [CrossRef][Green Version]
- Wang, N.; Shi, X.; Jiang, L.; Zheng, S.; Wang, D.; Tong, P.; Guo, D.; Fu, L.; Cui, Y.; Liu, X.; et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013, 23, 986–993. [Google Scholar] [CrossRef][Green Version]
- Peck, K.M.; Cockrell, A.S.; Yount, B.L.; Scobey, T.; Baric, R.S.; Heise, M.T. Glycosylation of Mouse DPP4 Plays a Role in Inhibiting Middle East Respiratory Syndrome Coronavirus Infection. J. Virol. 2015, 89, 4696–4699. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aertgeerts, K.; Ye, S.; Shi, L.; Prasad, S.G.; Witmer, D.; Chi, E.; Sang, B.; Wijnands, R.A.; Webb, D.R.; Swanson, R.V. N-linked glycosylation of dipeptidyl peptidase IV (CD26): Effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Sci. 2004, 13, 145–154. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peck, K.M.; Scobey, T.; Swanstrom, J.; Jensen, K.L.; Burch, C.L.; Baric, R.S.; Heise, M.T. Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants. J. Virol. 2017, 91, e00534-17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bassendine, M.F.; Bridge, S.H.; McCaughan, G.W.; Gorrell, M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J. Diabetes 2020, 12, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Vankadari, N.; Wilce, J.A. Emerging WuHan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020, 9, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef][Green Version]
- Bardaweel, S.K.; Hajjo, R.; Sabbah, D.A. Sitagliptin: A potential drug for the treatment of COVID-19? Acta Pharm. 2020, 71, 175–184. [Google Scholar] [CrossRef]
- Pitocco, D.; Tartaglione, L.; Viti, L.; Di Leo, M.; Pontecorvi, A.; Caputo, S. SARS-CoV-2 and DPP4 inhibition: Is it time to pray for Janus Bifrons? Diabetes Res. Clin. Pract. 2020, 163, 108162. [Google Scholar] [CrossRef]
- Krejner-Bienias, A.; Grzela, K.; Grzela, T. DPP4 Inhibitors and COVID-19-Holy Grail or Another Dead End? Arch. Immunol. Ther. Exp. 2021, 69, 1. [Google Scholar] [CrossRef]
- Alburikan, K.A. Abuelizz, H.A. Identifying factors and target preventive therapies for Middle East Respiratory Syn-drome sucsibtable patients. Saudi Pharm. J. 2020, 28, 161–164. [Google Scholar] [CrossRef]
- Arulmozhiraja, S.; Matsuo, N.; Ishitsubo, E.; Okazaki, S.; Shimano, H.; Tokiwa, H. Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs—An Ab Initio Fragment Molecular Orbital Study. PLoS ONE 2016, 11, e0166275. [Google Scholar] [CrossRef][Green Version]
SNP Loci | Observed Mutation | Variation Frequency | Variation Frequency (Homozygous) | Site of SNP | Correlated Amino Acid Residue | Correlated Amino Acid Residue within 50 bp |
---|---|---|---|---|---|---|
2:162,873,188 | T → C | 0.13 | 0.09 | Intron | Not applicable | Not applicable |
2:162,877,028 | T → A | 0.24 | 0.05 | Intron | Not applicable | Not applicable |
2:162,879,452 | T → C | 0.22 | 0.05 | Intron | Not applicable | Not applicable |
2:162,890,175 | T → C | 0.62 | 0.36 | Intron | Not applicable | 259–296 |
2:162,890,217 | G → A | 0.33 | 0.07 | Intron | Not applicable | Not applicable |
2:162,891,848 | C → T | 0.78 | 0.42 | Intron | Not applicable | 205–258 |
2:162,894,766 | A → G | 0.26 | 0.06 | Intron | Not applicable | Not applicable |
2:162,929,732 | G → A | 0.05 | 0.02 | Intron | Not applicable | Not applicable |
2:162,929,979 | A → G | 0.53 | 0.13 | Exon | L8Leu to Glu | 3–25 |
2:162.930,725 | T → G | 0.07 | 0.06 | Exon | Not applicable | Not applicable |
Amino Acid Residue | SNP Loci | Observed Mutation | Variation Frequency | Variation Frequency (Homozygous) | Number of SNPs with a Variation Frequency <0.05 Detected within 50 bp | Number of SNPs with a Variation Frequency >0.05 Detected within 50 bp |
---|---|---|---|---|---|---|
K267 | 2:162,890,137 | --- | --- | --- | 5 | 1 |
F269 | 2:162,890,131 | --- | --- | --- | 5 | 1 |
Q286 | 2:162,890,080 | --- | --- | --- | 3 | Not available |
T288 | 2:162,890,074 | --- | --- | --- | 3 | Not available |
A289 | 2:162,890,071 | A → G | 0.00042 | 0 | 2 | Not available |
A291 | 2:162,890,056 | --- | --- | --- | 2 | Not available |
L294 | 2:162,890,053 | --- | --- | --- | 2 | Not available |
H298 | 2:162,881,443 | --- | --- | --- | 1 | Not available |
R317 | 2:162,881,386 | --- | --- | --- | Not available | Not available |
Y322 | 2:162,881,371 | --- | --- | --- | Not available | Not available |
R336 | 2:162,881,329 | --- | --- | --- | 1 | Not available |
Q344 | 2:162,879,301 | --- | --- | --- | 1 | Not available |
I346 | 2:162,879,295 | --- | --- | --- | 1 | Not available |
K392 | 2:162,877,091 | T → deletion | 0.00126 | 0 | 5 | Not available |
Amino Acid Residue | SNP Loci | Observed Mutation | Variation Frequency | Variation Frequency (Homozygous) | Near Variations Detected within 50 bp |
---|---|---|---|---|---|
N85 | 2:162,903,459 | Not available | --- | --- | Variation C→T at 2:162,903,410 |
N92 | 2:162,903,429 | Not available | --- | --- | Variation C→T at 2:162,903,410 |
N150 | 2:162,903,264 | Not available | --- | --- | Variation T→A at 2:162,903,214 |
N219 | 2:162,891,792 | G → A | 0.00042 | 0 | Variation A→deletion at 2:162,891,779 |
N229 | 2:162,891,764 | Not available | --- | --- | None |
N281 | 2:162,890,098 | Not available | --- | --- | Variation C→G at 2:162,890,108 |
N321 | 2:162,881,378 | Not available | --- | --- | None |
N520 | 2:162,873,289 | Not available | --- | --- | Variation G→A at 2:162,873,306 |
N685 | 2:162,851,884 | Not available | --- | --- | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuelizz, H.A.; AlRasheed, M.M.; Alhoshani, A.; Alhawassi, T. Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People. Vaccines 2021, 9, 1193. https://doi.org/10.3390/vaccines9101193
Abuelizz HA, AlRasheed MM, Alhoshani A, Alhawassi T. Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People. Vaccines. 2021; 9(10):1193. https://doi.org/10.3390/vaccines9101193
Chicago/Turabian StyleAbuelizz, Hatem A., Maha M. AlRasheed, Ali Alhoshani, and Tariq Alhawassi. 2021. "Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People" Vaccines 9, no. 10: 1193. https://doi.org/10.3390/vaccines9101193