The Effects of Heterologous Immunization with Prime-Boost COVID-19 Vaccination against SARS-CoV-2
Abstract
:1. Introduction
2. Article Screening
3. Safety and Immunogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Yang, M.-H.; Chang, S.-M.; Hsieh, Y.-J.; Lee, C.-H.; Chen, Y.-M.A.; Yuan, C.-H.; Ho, S.-Y.; Tyan, Y.-C. Clinical significance of olfactory dysfunction in patients of COVID-19. J. Chin. Med. Assoc. 2021, 84, 682–689. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Huang, Y.-F.; Chen, Y.-M.; Chuang, K.-P.; Lee, C.-H.; Yuan, C.-H.; Deng, Y.-Z.; Yang, M.-H.; et al. Pulmonary Findings of [18F]FDG PET/CT Images on Asymptomatic COVID-19 Patients. Pathogens 2021, 10, 839. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 28 September 2021).
- Chiu, N.C.; Chi, H.; Tai, Y.L.; Peng, C.C.; Tseng, C.Y.; Chen, C.C.; Tan, B.C.; Lin, C.Y. Impact of Wearing Masks, Hand Hygiene, and Social Distancing on Influenza, Enterovirus, and All-Cause Pneumonia during the Coronavirus Pandemic: Retrospective National Epidemiological Surveillance Study. J. Med. Internet Res. 2020, 22, e21257. [Google Scholar] [CrossRef]
- Roma, P.; Monaro, M.; Muzi, L.; Colasanti, M.; Ricci, E.; Biondi, S.; Napoli, C.; Ferracuti, S.; Mazza, C. How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms. Int. J. Environ. Res. Public Health 2020, 17, 7252. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M.; Vaishya, R. Effects of COVID-19 pandemic in daily life. Curr. Med. Res. Pract. 2020, 10, 78–79. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Saluk-Bijak, J.; Bijak, M. Existing Drugs Considered as Promising in COVID-19 Therapy. Int. J. Mol. Sci. 2021, 22, 5434. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-C.; Wang, Y.-H.; Chen, Y.-L.; Tsai, W.-C.; Lee, C.-H.; Chuang, K.-P.; Chen, Y.-M.; Yuan, C.-H.; Ho, S.-Y.; Yang, M.-H.; et al. Chloroquine and Hydroxychloroquine: Efficacy in the Treatment of the COVID-19. Pathogens 2021, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattion, C.; Rodés-Guirao, L. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Veness, B.; Berger, D.; Hamad, N.; Bari, N. Thrombosis with Thrombocytopenia Syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccination—A risk-benefit analysis for people <60 years in Australia. Vaccine 2021, 39, 4784–4787. [Google Scholar]
- World Health Organization. Strategic Advisory Group of Experts on Immunization (SAGE). 2021. Available online: https://www.who.int/groups/strategic-advisory-group-of-experts-on-immunization/covid-19-materials (accessed on 10 August 2021).
- Long, B.; Bridwell, R.; Gottlieb, M. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. Am. J. Emerg. Med. 2021, 49, 58–61. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19)-COVID-19 Vaccine EUL Issued. Available online: https://extranet.who.int/pqweb/vaccines/covid-19-vaccines (accessed on 14 August 2021).
- Schmidt, T.; Klemis, V.; Schub, D.; Mihm, J.; Hielscher, F.; Marx, S.; Abu-Omar, A.; Ziegler, L.; Guckelmus, C.; Urschel, R.; et al. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat. Med. 2021, 27, 1530–1535. [Google Scholar] [CrossRef]
- Shimabukuro, T. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine—United States, December 14–23, 2020. Am. J. Transplant. 2021, 21, 1332–1337. [Google Scholar] [CrossRef]
- Shay, D.K.; Shimabukuro, T.T.; DeStefano, F. Myocarditis Occurring After Immunization with mRNA-Based COVID-19 Vaccines. JAMA Cardiol. 2021, in press. [Google Scholar] [CrossRef]
- American Centers for Disease Control and Prevention. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine—United States, March–April 2021. Available online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7018e2.htm (accessed on 14 August 2021).
- McMahon, D.E.; Amerson, E.; Rosenbach, M.; Lipoff, J.B.; Moustafa, D.; Tyagi, A.; Desai, S.R.; French, L.E.; Lim, H.W.; Thiers, B.H.; et al. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of 414 cases. J. Am. Acad. Dermatol. 2021, 85, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Aksu, K. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Palacios, R.; Batista, A.P.; Albuquerque, C.S.N.; Patiño, E.G.; Santos, J.D.P.; Tilli Reis Pessoa Conde, M.; de Oliveira Piorelli, R.; Pereira Júnior, L.C.; Raboni, S.M.; Ramos, F.; et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study 2021. Available online: https://ssrn.com/abstract=3822780 (accessed on 15 August 2021).
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef]
- Santos, A.; Gaspar, P.; de Souza, H. Refrigeration of COVID-19 Vaccines: Ideal Storage Characteristics, Energy Efficiency and Environmental Impacts of Various Vaccine Options. Energies 2021, 14, 1849. [Google Scholar] [CrossRef]
- Our World in Data. Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations?country=OWID_WRL (accessed on 27 September 2021).
- Gallè, F.; Sabella, E.; Roma, P.; De Giglio, O.; Caggiano, G.; Tafuri, S.; Da Molin, G.; Ferracuti, S.; Montagna, M.; Liguori, G.; et al. Knowledge and Acceptance of COVID-19 Vaccination among Undergraduate Students from Central and Southern Italy. Vaccines 2021, 9, 638. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.E.; SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aomodt, A.H.; Skottor, T.H.; Tjonnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- Pottegård, A.; Lund, L.C.; Karlstad, Ø.; Dahl, J.; Andersen, M.; Hallas, J.; Hviid, A. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021, 373, n1114. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Overview of EU/EEA Country Recommendations on COVID-19 Vaccination with Vaxzevria, and a Scoping Review of Evidence to Guide Decision-Making. Available online: https://www.ecdc.europa (accessed on 21 August 2021).
- Government of Canada. Archived 12: NACI Rapid Response: Interchangeability of Authorized COVID-19 Vaccines. Available online: https://www.canada.ca/en/public-health/services/immunization/national-advisory-committee-on-immunization-naci.html (accessed on 19 August 2021).
- Ledford, H. Could mixing COVID vaccines boost immune response? Nature 2021, 590, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. Mix-and-match COVID vaccines trigger potent immune response. Nature 2021, 593, 491. [Google Scholar] [CrossRef] [PubMed]
- Normark, J.; Vikström, L.; Gwon, Y.-D.; Persson, I.-L.; Edin, A.; Björsell, T.; Dernstedt, A.; Christ, W.; Tevell, S.; Evander, M.; et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. N. Engl. J. Med. 2021, 385, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.H.; Stuart, A.; Greenland, M.; Liu, X.; Van-Tam, J.S.N.; Snape, M.D. Heterologous prime-boost COVID-19 vaccination: Initial reactogenicity data. Lancet 2021, 397, 2043–2046. [Google Scholar] [CrossRef]
- Borobia, A.M.; Carcas, A.J.; Pérez-Olmeda, M.; Castaño, L.; Bertran, M.J.; García-Pérez, J.; Campins, M.; Portolés, A.; González-Pérez, M.; Morales, M.T.G.; et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021, 398, 121–130. [Google Scholar] [CrossRef]
- Gross, R.; Zanoni, M.; Seidel, A.; Conzelmann, C.; Gilg, A.; Krnavek, D.; Mueller, J.A. Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T-cell reactivity. medRxiv 2021. [Google Scholar] [CrossRef]
- Liu, X.; Shaw, R.H.; Stuart, A.S.V.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021, 398, 856–869. [Google Scholar] [CrossRef]
- Gram, M.A.; Emborg, H.D.; Moustsen-Helms, I.R.; Nielsen, J.; Sørensen, A.K.B.; Valentiner-Branth, P.; Nielsen, K. Vaccine effectiveness when combining the ChAdOx1 vaccine as the first dose with an mRNA COVID-19 vaccine as the second dose. medRxiv 2021. [Google Scholar] [CrossRef]
- Shimabukuro, T. Allergic reactions including anaphylaxis after receipt of the first dose of Moderna COVID-19 vaccine—United States, December 21, 2020–January 10, 2021. Am. J. Transplant. 2021, 21, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Hillus, D.; Schwarz, T.; Tober-Lau, P.; Hastor, H.; Thibeault, C.; Kasper, S.; COVIM/EICOV Study Group. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: A prospective cohort study. Lancet Respir Med. 2021, in press. [Google Scholar] [CrossRef]
- Rizk, J.G.; Gupta, A.; Sardar, P.; Henry, B.M.; Lewin, J.C.; Lippi, G.; Lavie, C.J. Clinical Characteristics and Pharmacological Management of COVID-19 Vaccine-Induced Immune Thrombotic Thrombocytopenia with Cerebral Venous Sinus Thrombosis: A Review. JAMA Cardiol. 2021, in press. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
Vaccine Name | Developer Country | Manufacturer | Vaccine Type | Storage Temperature/Shelf Life | Number of Doses | Interval between Doses | Vaccine Efficacy/Age (y) | Serious Adverse Event | Reference |
---|---|---|---|---|---|---|---|---|---|
ChAdOx1-S (AZD1222) | UK | AstraZeneca, SK Bioscience, and Serum Institute of India | Recombinant adenovirus vector | 2–8 °C/6 months | 2 | Day 28–84 | 63%/≥18 | Cerebral venous sinus thrombosis (CSVT) and other venous thrombosis with thrombocytopenia syndrome | [11,12,13,14] |
Ad26.COV2-S | USA and Europe | Janssen Pharmaceutical and Johnson & Johnson | Recombinant adenovirus vector | 2–8 °C/4.5 months −20 °C/2 years | 1 | Day 0 | 66.9%/≥18 | Cerebral venous sinus thrombosis (CSVT) and other venous vthrombosis with thrombocytopenia syndrome | [12,13,14,15] |
BNT162b2 | USA and Germany | Pfizer and BioNTech | mRNA | −70 °C/6 months | 2 | Day 21 | 92%/≥16 | Anaphylaxis and myocarditis | [12,14,16,17] |
mRNA-1273 | USA and Europe | Moderna Biotech | mRNA | 2–8 °C/1 month −20 °C/6 months | 2 | Day 28 | 94.1%/≥18 | Myocarditis, anaphylaxis, and other serious allergic reactions | [12,14,17,18,19] |
BBIBP-CorV (BIBP vaccine or Sinopharm COVID-19 vaccine) | China | Beijing Institute of Biological Products and Sinopharm | Inactivated virus | 2–8 °C/2 years | 2 | Day 14 | 78.1%/18–59 | No adverse reports ** | [12,14] |
CoronaVac | China | Sinovac | Inactivated virus | 2–8 °C/2 years | 2 | Day 14 | 50.7%/18–59 51.1%/≥60 | No adverse reports ** | [12,14,20,21] |
NVX-CoV2373 | USA | Novavax | Recombinant protein | 2–8 °C/not reported | 2 | Day 21 | 89.7%/≥18 * | Myocarditis | [22] |
Gam-COVID-Vac (Sputnik V) | Russia | Gamaleya Research Institute of Epidemiology and Microbiology | Heterologous recombinant adenovirus vector | 2–8 °C for dry form or −18.5 °C for liquid form/not reported | 1st dose rAd5; 2nd dose rAd6 | Day 21 | 91.6%/≥18 | No adverse reports ** | [23,24] |
Reference | Country | Design | Interval between Doses | Intervention (1st/2nd Dose) | Results |
---|---|---|---|---|---|
Johan N. et al., 2021 [35] | Sweden | An open, multicenter phase IV study | 9–12 weeks | Homologous vaccine group: ChAdOx1-S/ChAdOx1-S (n = 37, 28- to 62-year-old) Heterologous vaccine group: ChAdOx1-S/mRNA-1273 (n = 51, 23- to 59-year-old) | S-specific and RBD-specific IgG geometric mean titers At the day of the 2nd dose inoculation, the similar titer of S-specific and RBD-specific IgG between two groups
|
Robert, H.S. et al., 2021 [33,34,36] | UK | A single-blind, randomized, multicenter phase II study | 4 weeks | Homologous vaccine group (50- to 69-year-old): ChAdOx1-S/ChAdOx1-S (n = 115); BNT162b2/BNT 162b2 (n = 110) Heterologous vaccine group (50- to 69-year-old): ChAdOx1-S/BNT162b2 (n = 110); BNT162b2/ChAdOx1-S (n = 114) | Adverse events
|
Alberto, M.B. et al., 2021 [34,37] | Spain | An open-label, randomized, controlled multicenter phase II study | 8–12 weeks | Without homologous vaccine group, only 1 dose of ChAdOx1-S (n = 226, 18- to 60-year-old): Heterologous vaccine group (18- to 60-year-old): ChAdOx1-S/BNT162b2 (n = 451) | S-specific and RBD-specific IgG geometric mean titers
|
Tina S. et al., 2021 [41] | Germany | Observation study | 9–12 weeks: ChAdOx1-S/ChAdOx1-S; ChAdOx1-S/BNT162b2 or mRNA-1273 3–6 weeks: BNT162b2/BNT162b2 or mRNA-1273/mRNA-1273 | Homologous vaccine group: ChAdOx1-S/ChAdOx1-S (n = 55, 36- to 61-year-old); BNT162b2/BNT162b2 or mRNA-1273/mRNA-1273 (n = 62, 29- to 52-year-old) Heterologous vaccine group: ChAdOx1-S/BNT162b2 or mRNA-1273 (n = 96, 30- to 59-year-old) | S-specific IgG geometric mean titers:
|
Rüdiger G. et al., 2021 [38] | Germany | Clinical study | 8 weeks | Homologous vaccine group: BNT162b2/BNT162b2 (n = NR, 25-to 55-year-old) Heterologous vaccine group: ChAdOx1-S/BNT162-b2 (n = 26, 25- to 46- year-old) | S-specific IgG titer:
|
Xin Xue L. et. al., 2021 [39] | UK | A single blinded, randomized, multicenter, phase II, non-inferiority study | 4 weeks | Homologous vaccine group (50- to 69-year-old): ChAdOx1-S/ChAdOx1-S (n = 112); BNT162b2/BNT162b2 (n = 110) Heterologous vaccine group (50- to 69-year-old): ChAdOx1-S/BNT162b2 (n = 110); BNT162b2/ChAdOx1-S (n = 114) | S-specific IgG geometric mean titers:
|
David H. et al., 2021 [42] | Germany | Prospective study | 3 weeks: BNT162b2/BNT162b2 10–12 weeks: ChAdOx1-S/ChAdOx1-S, ChAdOx1-S/BNT162b2 | Homologous vaccine group: ChAdOx1-S/ChAdOx1-S (n = 38, 33- to 59-year-old); BNT162b2/BNT162b2 (n = 174, 29- to 43-year-old) Heterologous vaccine group: ChAdOx1-S/BNT162-b2 (n = 104, 29- to 51-year-old) | S1-specific and RBD-specific IgG signal-to cutoff- ratio:
|
Gram M.A. et al. [40] | Denmark | Clinical study | 82 days | Heterologous vaccine group: ChAdOx1-S/BNT162b2 (n = 88,050) ChAdOx1-S/mRNA-1273 (n = 44,501) Median age of 45 and 46 years at the first and second dose |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.-C.; Chen, Y.-M.A.; Chan, H.-P.; Chang, C.-C.; Chuang, K.-P.; Lee, C.-H.; Yuan, C.-H.; Tyan, Y.-C.; Yang, M.-H. The Effects of Heterologous Immunization with Prime-Boost COVID-19 Vaccination against SARS-CoV-2. Vaccines 2021, 9, 1163. https://doi.org/10.3390/vaccines9101163
Ho T-C, Chen Y-MA, Chan H-P, Chang C-C, Chuang K-P, Lee C-H, Yuan C-H, Tyan Y-C, Yang M-H. The Effects of Heterologous Immunization with Prime-Boost COVID-19 Vaccination against SARS-CoV-2. Vaccines. 2021; 9(10):1163. https://doi.org/10.3390/vaccines9101163
Chicago/Turabian StyleHo, Tzu-Chuan, Yi-Ming Arthur Chen, Hung-Pin Chan, Chin-Chuan Chang, Kuo-Pin Chuang, Che-Hsin Lee, Cheng-Hui Yuan, Yu-Chang Tyan, and Ming-Hui Yang. 2021. "The Effects of Heterologous Immunization with Prime-Boost COVID-19 Vaccination against SARS-CoV-2" Vaccines 9, no. 10: 1163. https://doi.org/10.3390/vaccines9101163
APA StyleHo, T. -C., Chen, Y. -M. A., Chan, H. -P., Chang, C. -C., Chuang, K. -P., Lee, C. -H., Yuan, C. -H., Tyan, Y. -C., & Yang, M. -H. (2021). The Effects of Heterologous Immunization with Prime-Boost COVID-19 Vaccination against SARS-CoV-2. Vaccines, 9(10), 1163. https://doi.org/10.3390/vaccines9101163