COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Patient Consent and Protocol Approvals
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; López, J.R.A.; Cattelan, A.M.; Viladomiu, A.S.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.D.; Lye, D.C.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.; Galli, M.; Ahn, M.-Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; et al. Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020, 383, 2320–2332. [Google Scholar] [CrossRef]
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef]
- Saeed, B.Q.; Al-Shahrabi, R.; Alhaj, S.S.; Alkokhardi, Z.M.; Adrees, A.O. Side Effects and Perceptions Following Sinopharm COVID-19 Vaccination. Int. J. Infect. Dis. 2021, 111, 219–226. [Google Scholar] [CrossRef]
- Li, X.-N.; Huang, Y.; Wang, W.; Jing, Q.-L.; Zhang, C.-H.; Qin, P.-Z.; Guan, W.-J.; Gan, L.; Li, Y.-L.; Liu, W.-H.; et al. Efficacy of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect. 2021, 10, 1–32. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Jaretzki, A.; Barohn, R.; Ernstoff, R.; Kaminski, H.; Keesey, J.; Penn, A.; Sanders, D. Myasthenia gravis. Neurology 2000, 55, 16–23. [Google Scholar] [CrossRef]
- Gummi, R.R.; Kukulka, N.A.; Deroche, C.B.; Govindarajan, R. Factors associated with acute exacerbations of myasthenia gravis. Muscle Nerve 2019, 60, 693–699. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Solé, G.; Mathis, S.; Friedman, D.; Salort-Campana, E.; Tard, C.; Bouhour, F.; Magot, A.; Annane, D.; Clair, B.; Le Masson, G.; et al. Impact of Coronavirus Disease 2019 in a French Cohort of Myasthenia Gravis. Neurology 2021, 96, e2109–e2120. [Google Scholar] [CrossRef] [PubMed]
- Jakubíková, M.; Týblová, M.; Tesař, A.; Horáková, M.; Vlažná, D.; Ryšánková, I.; Nováková, I.; Dolečková, K.; Dušek, P.; Piťha, J.; et al. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. Eur. J. Neurol. 2021, 28, 3418–3425. [Google Scholar] [CrossRef]
- Muppidi, S.; Guptill, J.T.; Jacob, S.; Li, Y.; Farrugia, M.; Guidon, A.C.; Tavee, J.; Kaminski, H.; Howard, J.F.; Cutter, G.; et al. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol. 2020, 19, 970–971. [Google Scholar] [CrossRef]
- Detmer, A.; Glenting, J. Live bacterial vaccines—A review and identification of potential hazards. Microb. Cell Fact. 2006, 5, 23. [Google Scholar] [CrossRef][Green Version]
- Vadalà, M.; Poddighe, D.; Laurino, C.; Palmieri, B. Vaccination and autoimmune diseases: Is prevention of adverse health effects on the horizon? EPMA J. 2017, 8, 295–311. [Google Scholar] [CrossRef][Green Version]
- Strijbos, E.; Tannemaat, M.R.; Alleman, I.; de Meel, R.; Bakker, J.A.; van Beek, R.; Kroon, F.P.; Rimmelzwaan, G.F.; Verschuuren, J. A prospective, double-blind, randomized, placebo-controlled study on the efficacy and safety of influenza vaccination in myasthenia gravis. Vaccine 2019, 37, 919–925. [Google Scholar] [CrossRef]
- Mok, C.C.; Ho, L.Y.; Fong, L.S.; To, C.H. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: A case–control study. Ann. Rheum. Dis. 2013, 72, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, S.K.; De Moraes, J.C.B.; Levy-Neto, M.; Aikawa, N.E.; Ribeiro, A.C.D.M.; Saad, C.G.S.; Precioso, A.; Silva, C.A.; Bonfá, E. Pandemic unadjuvanted influenza A (H1N1) vaccine in dermatomyositis and polymyositis: Immunogenicity independent of therapy and no harmful effect in disease. Vaccine 2012, 31, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Pasoto, S.G.; Ribeiro, A.C.; Viana, V.S.T.; Leon, E.P.; Bueno, C.; Levy-Neto, M.; Precioso, A.; Timenetsky, M.D.C.S.T.; Bonfa, E. Short and long-term effects of pandemic unadjuvanted influenza A(H1N1)pdm09 vaccine on clinical manifestations and autoantibody profile in primary Sjögren’s syndrome. Vaccine 2013, 31, 1793–1798. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kelly, H.; Sokola, B.; Abboud, H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J. Neuroimmunol. 2021, 356, 577599. [Google Scholar] [CrossRef] [PubMed]
- Watad, A.; De Marco, G.; Mahajna, H.; Druyan, A.; Eltity, M.; Hijazi, N.; Haddad, A.; Elias, M.; Zisman, D.; Naffaa, M.; et al. Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination. Vaccines 2021, 9, 435. [Google Scholar] [CrossRef]
- Tagliaferri, A.R.; Narvaneni, S.; Azzam, M.H.; Grist, W. A Case of COVID-19 Vaccine Causing a Myasthenia Gravis Crisis. Cureus 2021, 13, e15581. [Google Scholar] [CrossRef]
- Seok, H.Y.; Shin, H.Y.; Kim, J.K.; Kim, B.J.; Oh, J.; Suh, B.C.; Kim, S.-Y.; Kang, S.-Y.; Ahn, S.-W.; Bae, J.S.; et al. The Impacts of Influenza Infection and Vaccination on Exacerbation of Myasthenia Gravis. J. Clin. Neurol. 2017, 13, 325–330. [Google Scholar] [CrossRef][Green Version]
- Strijbos, E.; Huijbers, M.G.; Van Es, I.E.; Alleman, I.; Dam, M.M.V.O.-T.; Bakker, J.; Van Zwet, E.W.; Der Zijde, C.M.J.-V.; Van Tol, M.D.; Verschuuren, J.J. A prospective, placebo controlled study on the humoral immune response to and safety of tetanus revaccination in myasthenia gravis. Vaccine 2017, 35, 6290–6296. [Google Scholar] [CrossRef]
- Zinman, L.; Thoma, J.; Kwong, J.C.; Kopp, A.; Stukel, T.; Juurlink, D.N. Safety of influenza vaccination in patients with myasthenia gravis: A population-based study. Muscle Nerve 2009, 40, 947–951. [Google Scholar] [CrossRef]
- Auriel, E.; Regev, K.; Dori, A.; Karni, A. Safety of influenza and H1N1 vaccinations in patients with myasthenia gravis, and patient compliance. Muscle Nerve 2011, 43, 893–894. [Google Scholar] [CrossRef]
- Tackenberg, B.; Schneider, M.; Blaes, F.; Eienbröker, C.; Schade-Brittinger, C.; Wellek, A.; Deschauer, M.; Eickmann, M.; Klenk, H.-D.; Müller, H.-H.; et al. Acetylcholine Receptor Antibody Titers and Clinical Course after Influenza Vaccination in Patients with Myasthenia Gravis: A Double-Blind Randomized Controlled Trial (ProPATIent-Trial). EBioMedicine 2018, 28, 143–150. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Subesinghe, S.; Bechman, K.; Rutherford, A.I.; Goldblatt, D.; Galloway, J.B. A Systematic Review and Metaanalysis of Antirheumatic Drugs and Vaccine Immunogenicity in Rheumatoid Arthritis. J. Rheumatol. 2018, 45, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Barnetche, T.; Combe, B.; Morel, J. Effect of Methotrexate, Anti-Tumor Necrosis Factor α, and Rituximab on the Immune Response to Influenza and Pneumococcal Vaccines in Patients With Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Arthritis Rheum. 2014, 66, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 22) |
---|---|
Gender, n (%) | |
Female | 6 (27.3) |
Male | 16 (72.7) |
Age, y, mean (SD) | 51.1 (12.1) |
Onset age, y, mean (SD) | 45.4 (11.8) |
AChR antibody, n (%) | |
Seropositive | 19 (86.4) |
Seronegative | 3 (13.6) |
MG type, n (%) | |
Ocular MG | 10 (45.5) |
Generalized MG | 12 (54.5) |
Thymectomy, n (%) | |
Yes | 7 (31.8) |
No | 15 (68.2) |
Thymoma, n (%) | |
Yes | 4 (18.2) |
No | 18 (81.8) |
Disease status before vaccination, n (%) | |
Stability | 18 (81.8) |
MGFA I | 3 (13.6) |
MGFA II b | 1(4.6) |
Duration of symptoms stable, m, median (IQR) | 15.0 (6.0, 24.0) |
Immunosuppression protocols, n (%) | |
Steroids + IS | 3 (13.6) |
IS monotherapy | 14 (63.7) |
No therapy | 5 (22.7) |
Types of immunosuppressive drugs, n (%) | |
Azathioprine | 15 (88.2) |
Mycophenolate mofetil | 2 (11.8) |
Duration of immunosuppressive therapy, m, median (IQR) | 12.0 (6.0, 15.0) |
Duration of azathioprine treatment, m, median (IQR) | 12.0 (5.0, 13.5) |
Dose of azathioprine, mg, mean (SD) | 75.0 (37.8) |
Pyridostigmine | |
Yes | 9 (40.9) |
No | 13 (59.1) |
Duration of pyridostigmine treatment, m, median (IQR) | 4.5 (2.0, 11.5) |
Dose of pyridostigmine, mg, mean (SD) | 90.0 (40.0) |
Type of COVID-19 vaccine, n (%) | |
Inactivated vaccine | 21 (95.5) |
Recombinant vaccine | 1 (4.5) |
Vaccination status, n (%) | |
Finished vaccination | 15 (68.2) |
Unfinished vaccination | 7 (31.8) |
Worsening of MG symptoms | |
Yes | 2 (9.1) |
No | 20 (90.9) |
ID | Gender | Age (y) | Onset Age (y) | AChR Antibody | MG Type | Thymoma | Thymectomy | Disease Status before Vaccination | Duration of Symptoms Stability (m) | IS Therapy | Duration of IS Therapy (m) | Drug Dose (mg/d) | Duration of Pyridostigmine (m) | Pyridostigmine Dose (mg/d) | Type of Vaccines/Manufacturer | Vaccination Status | Worsening of MG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Male | 45 | 41 | Seronegative | GMG | No | Yes | Stability | 6 | AZA | 12 | 100 | Inactivated/CoronaVac | Unfinished | No | ||
2 | Male | 43 | 39 | Seropositive | GMG | Yes | Yes | Stability | 12 | AZA | 12 | 100 | Inactivated/CoronaVac | Finished | No | ||
3 | Male | 52 | 49 | Seropositive | GMG | No | No | Stability | 20 | AZA | 20 | 100 | Inactivated/CoronaVac | Finished | No | ||
4 | Male | 52 | 49 | Seropositive | GMG | No | No | Stability | 12 | AZA | 12 | 50 | 12 | 90 | Inactivated/CoronaVac | Unfinished | No |
5 | Female | 73 | 63 | Seronegative | OMG | No | Yes | MGFA II | NA | No | NA | Inactivated/CoronaVac | Unfinished | No | |||
6 | Male | 53 | 49 | Seropositive | OMG | No | No | Stability | 3 | Steroid + AZA | 4 | P 15 mg AZA 100 mg | Inactivated/CoronaVac | Unfinished | No | ||
7 | Male | 54 | 53 | Seronegative | OMG | No | No | MGFA I | NA | No | NA | 1 | 180 | Inactivated/CoronaVac | Finished | No | |
8 | Male | 43 | 41 | Seropositive | OMG | Yes | Yes | Stability | 2 | Steroid + AZA | 2 | P 2.5 mg AZA 100 mg | 2 | 90 | Inactivated /CoronaVac | Finished | No |
9 | Male | 43 | 38 | Seropositive | OMG | No | No | Stability | 48 | AZA | 6 | 6 | 60 | Inactivated/CoronaVac | Finished | No | |
10 | Female | 55 | 38 | Seropositive | GMG | No | No | MGFA I | NA | AZA | 3 | 3 | 60 | Inactivated/CoronaVac | Finished | No | |
11 | Male | 58 | 53 | Seropositive | GMG | No | No | Stability | 24 | AZA | 15 | Inactivated/CoronaVac | Finished | No | |||
12 | Male | 60 | 56 | Seropositive | OMG | No | No | Stability | 48 | MMF | 12 | 250 | 12 | 60 | Inactivated/CoronaVac | Finished | No |
13 | Female | 69 | 66 | Seropositive | GMG | No | No | Stability | 6 | MMF | 20 | Inactivated/CoronaVac | Finished | No | |||
14 | Male | 67 | 65 | Seropositive | OMG | No | No | Stability | 6 | AZA | 6 | Inactivated/CoronaVac | Finished | No | |||
15 | Female | 25 | 23 | Seropositive | OMG | No | No | Stability | 24 | AZA | 12 | 12 | 120 | Inactivated/CoronaVac | Finished | No | |
16 | Male | 26 | 22 | Seropositive | GMG | No | No | Stability | 12 | No | NA | Inactivated/Sinopharm | Finished | No | |||
17 | Male | 46 | 35 | Seropositive | GMG | No | No | Stability | 60 | AZA | 10 | 10 | 60 | Inactivated/Sinopharm | Finished | No | |
18 | Female | 61 | 43 | Seropositive | GMG | No | No | Stability | 120 | AZA | 36 | Inactivated/Sinovac | Unfinished | No | |||
19 | Female | 52 | 46 | Seropositive | OMG | Yes | Yes | Stability | 18 | MMF | 20 | 1000 | 1 | 60 | Recombinant/Zhifei Biological Products | Unfinished | neck weakness (6 days) |
20 | Male | 51 | 46 | Seropositive | GMG | Yes | Yes | Stability | 23 | No | NA | Inactivated/CoronaVac | Unfinished | Diplopia/limb weakness (10 days) | |||
21 | Male | 56 | 50 | Seropositive | OMG | No | No | MGFA I | NA | Steroid + AZA | 1 | P 35 mg AZA 100 mg | Inactivated/Sinopharm | Finished | No | ||
22 | Male | 39 | 33 | Seropositive | GMG | No | Yes | Stability | 2 | No | NA | 2 | 120 | Inactivated/Sinopharm | Finished | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Z.; Tang, Y.; Li, C.; Sun, C.; Zhu, Y.; Li, Z.; Chang, T. COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series. Vaccines 2021, 9, 1112. https://doi.org/10.3390/vaccines9101112
Ruan Z, Tang Y, Li C, Sun C, Zhu Y, Li Z, Chang T. COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series. Vaccines. 2021; 9(10):1112. https://doi.org/10.3390/vaccines9101112
Chicago/Turabian StyleRuan, Zhe, Yonglan Tang, Chunhong Li, Chao Sun, Ying Zhu, Zhuyi Li, and Ting Chang. 2021. "COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series" Vaccines 9, no. 10: 1112. https://doi.org/10.3390/vaccines9101112