Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-Like Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Reagents
2.3. Bacteria and Plasmid
2.4. High-Throughput Sequencing Using an Illumina Platform
2.5. Cell Invasion Assay
2.6. VLPFMDV Purification
2.7. Western Blot Analysis
2.8. Reverse Transcription-Quantitative PCR (RT-qPCR) Analysis
2.9. Fluorescence Microscopic Analysis
2.10. Mice Experiments
2.11. Measurement of Mice Immunoglobulin
2.12. Virus Neutralization Assays
2.13. Flow Cytometry
2.14. Cytokine ELISA
2.15. Statistical Analysis
3. Results
3.1. Development of Attenuated Salmonella Strain Using RMT
3.2. Expression of VP1 in Response to recN Promoter in KST0669
3.3. Mucosal and Humoral FMDV-Specific Immune Responses Elicited by KST0669 Vaccination
3.4. Higher FMDV-Specific T-Cell Immunity Induced by Oral KST0669 Vaccination
3.5. Protection Against Salmonella Typhimurium Infection Through KST0669 Vaccination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, I.; Marion, G.; McKendrick, I.J.; Porphyre, T.; Handel, I.G.; Bronsvoort, B.M.D. Endemic foot and mouth disease: Pastoral in-herd disease dynamics in sub-saharan africa. Sci. Rep. 2019, 9, 17349. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, J.; Cosivi, O. Elimination of foot-and-mouth disease in south america: Lessons and challenges. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120381. [Google Scholar] [CrossRef] [PubMed]
- Grubman, M.J. The 5’ end of foot-and-mouth disease virion rna contains a protein covalently linked to the nucleotide pup. Arch. Virol. 1980, 63, 311–315. [Google Scholar] [CrossRef]
- Paton, D.J.; Sumption, K.J.; Charleston, B. Options for control of foot-and-mouth disease: Knowledge, capability and policy. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2657–2667. [Google Scholar] [CrossRef]
- Parida, S. Vaccination against foot-and-mouth disease virus: Strategies and effectiveness. Expert Rev. Vaccines 2009, 8, 347–365. [Google Scholar] [CrossRef]
- Rweyemamu, M.M.; Unehara, O.; Giorgi, W.; Medeiros, R.; Lucca, D.; Baltazar, M. Effect of formaldehyde and binary ethyleneimine (bei) on the integrity of foot and mouth disease virus capsid. Rev. Sci. Tech. 1989, 8, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Horsington, J.; Zhang, Z.; Bittner, H.; Hole, K.; Singanallur, N.B.; Alexandersen, S.; Vosloo, W. Early protection in sheep against intratypic heterologous challenge with serotype o foot-and-mouth disease virus using high-potency, emergency vaccine. Vaccine 2015, 33, 422–429. [Google Scholar] [CrossRef]
- Doel, T.R. FMD vaccines. Virus Res. 2003, 91, 81–99. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, Z.; Liu, Z. Foot-and-mouth disease vaccines: Progress and problems. Expert Rev. Vaccines 2016, 15, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.B.; Edwards, L.T. A field trial in south africa of an attenuated vaccine against foot-and-mouth disease. Res. Veter. Sci. 1965, 6, 196–201. [Google Scholar] [CrossRef]
- Skinner, H.H. Propagation of strains of foot-and-mouth disease virus in unweaned white mice. Proc. R. Soc. Med. 1951, 44, 1041–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.C.; Sun, S.Q.; Jin, Y.; Yang, S.L.; Wei, Y.Q.; Sun, D.H.; Yin, S.H.; Ma, J.W.; Liu, Z.X.; Guo, J.H.; et al. Foot-and-mouth disease virus-like particles produced by a sumo fusion protein system in escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet. Res. 2013, 44, 48. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.D.; Yan, Y.P.; Liang, S.M.; Wang, T.F. Production of fmdv virus-like particles by a sumo fusion protein approach in escherichia coli. J. Biomed. Sci. 2009, 16, 69. [Google Scholar] [CrossRef] [Green Version]
- Terhuja, M.; Saravanan, P.; Tamilselvan, R.P. Comparative efficacy of virus like particle (vlp) vaccine of foot-and-mouth-disease virus (fmdv) type o adjuvanted with poly i:C or cpg in guinea pigs. Biologicals 2015, 43, 437–443. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, Z.; Sun, J.; Bai, X.; Sun, P.; Bao, H.; Chen, Y.; Guo, J.; Li, D.; Liu, X.; et al. Synthesis of empty capsid-like particles of asia i foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs. Veter. Microbiol. 2009, 137, 10–17. [Google Scholar] [CrossRef]
- Bhat, S.A.; Saravanan, P.; Hosamani, M.; Basagoudanavar, S.H.; Sreenivasa, B.P.; Tamilselvan, R.P.; Venkataramanan, R. Novel immunogenic baculovirus expressed virus-like particles of foot-and-mouth disease (fmd) virus protect guinea pigs against challenge. Res. Veter. Sci. 2013, 95, 1217–1223. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 42, 854. [Google Scholar] [CrossRef] [Green Version]
- Defaus, S.; Forner, M.; Canas-Arranz, R.; de Leon, P.; Bustos, M.J.; Rodriguez-Pulido, M.; Blanco, E.; Sobrino, F.; Andreu, D. Designing functionally versatile, highly immunogenic peptide-based multiepitopic vaccines against foot-and-mouth disease virus. Vaccines 2020, 8, 406. [Google Scholar] [CrossRef]
- Mahdy, S.E.; Liu, S.; Su, L.; Zhang, X.; Chen, H.; Pei, X.; Wang, C. Expression of the vp1 protein of fmdv integrated chromosomally with mutant listeria monocytogenes strain induced both humoral and cellular immune responses. Appl. Microbiol. Biotechnol. 2019, 103, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Sun, S.H.; Guo, Y.J.; Zhou, F.J.; Chen, Z.H.; Lin, Y.; Shi, K. Immune response in mice inoculated with plasmid dnas containing multiple-epitopes of foot-and-mouth disease virus. Vaccine 2003, 21, 4704–4707. [Google Scholar] [CrossRef]
- Crowther, J.R.; Farias, S.; Carpenter, W.C.; Samuel, A.R. Identification of a fifth neutralizable site on type o foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J. Gen. Virol. 1993, 74, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.V.; Lefevre, E.A.; Windsor, M.A.; Inghese, C.; Gubbins, S.; Prentice, H.; Juleff, N.D.; Charleston, B. Cd4+ t-cell responses to foot-and-mouth disease virus in vaccinated cattle. J. Gen. Virol 2013, 94, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.; Taylor, G.; Charleston, B.; Ellis, S.A. Induction of a cross-reactive cd8(+) t cell response following foot-and-mouth disease virus vaccination. J. Virol. 2010, 84, 12375–12384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, I.Y.; Van, T.T.; Smooker, P.M. Live-attenuated bacterial vectors: Tools for vaccine and therapeutic agent delivery. Vaccines 2015, 3, 940–972. [Google Scholar] [CrossRef] [Green Version]
- Kotton, C.N.; Hohmann, E.L. Enteric pathogens as vaccine vectors for foreign antigen delivery. Infect. Immun. 2004, 72, 5535–5547. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Gao, P.; Li, Z. A recombinant adenovirus expressing p12a and 3c protein of the type o foot-and-mouth disease virus stimulates systemic and mucosal immune responses in mice. BioMed Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.M.; Hone, D.; Tacket, C.; Ferreccio, C.; Cryz, S. Clinical and field trials with attenuated salmonella typhi as live oral vaccines and as “carrier” vaccines. Res. Microbiol. 1990, 141, 807–816. [Google Scholar] [CrossRef]
- Galen, J.E.; Pasetti, M.F.; Tennant, S.; Ruiz-Olvera, P.; Sztein, M.B.; Levine, M.M. Salmonella enterica serovar typhi live vector vaccines finally come of age. Immunol. Cell Biol. 2009, 87, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Wang, S.; Roland, K.L.; Gunn, B.M.; Curtiss, R., 3rd. Immunogenicity of a live recombinant salmonella enterica serovar typhimurium vaccine expressing pspa in neonates and infant mice born from naive and immunized mothers. Clin. Vaccine Immunol. CVI 2010, 17, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, S.E.; Lottenbach, K.R.; Hill, H.; Blevins, T.P.; Yu, Y.; Zhang, Y.; Brenneman, K.E.; Kelly-Aehle, S.M.; McDonald, C.; Jansen, A.; et al. A phase I, dose-escalation trial in adults of three recombinant attenuated salmonella typhi vaccine vectors producing streptococcus pneumoniae surface protein antigen PspA. Vaccine 2013, 31, 4874–4880. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.P.; Humphrey, T.J.; Maskell, D.J. Molecular insights into farm animal and zoonotic salmonella infections. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2709–2723. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Linke, L.; Doster, E.; Hyatt, D.; Burgess, B.A.; Magnuson, R.; Pabilonia, K.L.; Morley, P.S. Genomic diversity of class i integrons from antimicrobial resistant strains of salmonella typhimurium isolated from livestock, poultry and humans. PLoS ONE 2020, 15, e0243477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.N.; Pulford, C.V.; Akoko, J.; Perez Sepulveda, B.; Predeus, A.V.; Bevington, J.; Duncan, P.; Hall, N.; Wigley, P.; Feasey, N.; et al. Salmonella identified in pigs in kenya and malawi reveals the potential for zoonotic transmission in emerging pork markets. PLoS Neglected Trop. Dis. 2020, 14, e0008796. [Google Scholar] [CrossRef] [PubMed]
- Clark-Curtiss, J.E.; Curtiss, R., 3rd. Salmonella vaccines: Conduits for protective antigens. J. Immunol. 2018, 200, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin’ombe, N. Recombinant salmonella enterica serovar typhimurium as a vaccine vector for hiv-1 gag. Viruses 2013, 5, 2062–2078. [Google Scholar] [CrossRef]
- Gao, S.; Jung, J.H.; Lin, S.M.; Jang, A.Y.; Zhi, Y.; Bum Ahn, K.; Ji, H.J.; Hyang Lim, J.; Guo, H.; Choy, H.E.; et al. Development of oxytolerant salmonella typhimurium using radiation mutation technology (RMT) for cancer therapy. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; et al. Complete genome sequence of salmonella enterica serovar typhimurium lt2. Nature 2001, 413, 852–856. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- McCullough, K.C.; Crowther, J.R.; Butcher, R.N.; Carpenter, W.C.; Brocchi, E.; Capucci, L.; De Simone, F. Immune protection against foot-and-mouth disease virus studied using virus-neutralizing and non-neutralizing concentrations of monoclonal antibodies. Immunology 1986, 58, 421–428. [Google Scholar] [PubMed]
- Finney, D.J. Statistical Method in Biological Assay, 2nd ed.; Hafner Pub. Co.: New York, NY, USA, 1964; p. 668. [Google Scholar]
- Parida, S.; Anderson, J.; Cox, S.J.; Barnett, P.V.; Paton, D.J. Secretory iga as an indicator of oro-pharyngeal foot-and-mouth disease virus replication and as a tool for post vaccination surveillance. Vaccine 2006, 24, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Dong, C. Il-17 cytokines in immunity and inflammation. Emerg. Microbes Infect. 2013, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Babb, R.; Chen, A.; Hirst, T.R.; Kara, E.E.; McColl, S.R.; Ogunniyi, A.D.; Paton, J.C.; Alsharifi, M. Intranasal vaccination with gamma-irradiated streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by b-cells and innate il-17 responses. Clin. Sci. 2016, 130, 697–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, L.L.; Gay, C.G. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev. Vaccines 2011, 10, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Kong, W. Development of antiviral vaccine utilizing self-destructing salmonella for antigen and DNA vaccine delivery. Methods Mol. Biol. 2021, 2225, 39–61. [Google Scholar]
- Li, Q.; Lv, Y.; Li, Y.A.; Du, Y.; Guo, W.; Chu, D.; Wang, X.; Wang, S.; Shi, H. Live attenuated salmonella enterica serovar choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020, 38, 6904–6913. [Google Scholar] [CrossRef]
- Shirdast, H.; Ebrahimzadeh, F.; Taromchi, A.H.; Mortazavi, Y.; Esmaeilzadeh, A.; Sekhavati, M.H.; Nedaei, K.; Mirabzadeh, E. Recombinant lactococcus lactis displaying omp31 antigen of brucella melitensis can induce an immunogenic response in balb/c mice. Probiotics Antimicrob. Proteins 2020, 1–10. [Google Scholar] [CrossRef]
- Song, J.; Zhao, L.; Song, M. A lactococcus lactis-vectored oral vaccine induces protective immunity of mice against enterotoxigenic escherichia coli lethal challenge. Immunol. Lett. 2020, 225, 57–63. [Google Scholar] [CrossRef]
- Lv, P.; Song, Y.; Liu, C.; Yu, L.; Shang, Y.; Tang, H.; Sun, S.; Wang, F. Application of bacillus subtilis as a live vaccine vector: A review. J. Vet. Med. Sci. Jpn. Soc. Vet. Sci. 2020, 82, 1693–1699. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; International Atomic Energy Agency. The Use of Induced Mutations in Plant Breeding-Report, 1st ed.; Symposium Publications Division: Oxford, NY, USA, 1965; p. 832. [Google Scholar]
- Furbank, R.T.; Jimenez-Berni, J.A.; George-Jaeggli, B.; Potgieter, A.B.; Deery, D.M. Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops. N. Phytol. 2019, 223, 1714–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.I.; Yoon, M.; Joe, M.; Park, H.; Lee, S.G.; Han, S.J.; Lee, P.C. Development of microalga scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioprocess Biosyst. Eng. 2014, 37, 2437–2444. [Google Scholar] [CrossRef] [PubMed]
- Awan, M.S.; Tabbasam, N.; Ayub, N.; Babar, M.E.; Mehboob ur, R.; Rana, S.M.; Rajoka, M.I. Gamma radiation induced mutagenesis in aspergillus niger to enhance its microbial fermentation activity for industrial enzyme production. Mol. Biol. Rep. 2011, 38, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Brito, P.P.; Azevedo, H.; Cipolli, K.M.; Fukuma, H.T.; Mourao, G.B.; Roque, C.V.; Miya, N.T.; Pereira, J.L. Effect of the gamma radiation dose rate on psychrotrophic bacteria, thiobarbituric acid reactive substances, and sensory characteristics of mechanically deboned chicken meat. J. Food Sci. 2011, 76, S133–S138. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, J.; Tian, H.; Chen, X.; Ping, W.; Tian, C.; Lei, H. Mutation-based selection and analysis of komagataeibacter hansenii hdm1-3 for improvement in bacterial cellulose production. J. Appl. Microbiol. 2016, 121, 1323–1334. [Google Scholar] [CrossRef] [Green Version]
- Hungund, B.S.; Gupta, S.G. Strain improvement of gluconacetobacter xylinus ncim 2526 for bacterial cellulose production. Afr. J. Biotechnol. 2010, 9, 5170–5172. [Google Scholar]
- Sedgwick, B.; Lindahl, T. Recent progress on the ada response for inducible repair of DNA alkylation damage. Oncogene 2002, 21, 8886–8894. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, N.; Gronenberg, L.S.; Kahne, D.; Silhavy, T.J. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of escherichia coli. Proc. Nat. Acad. Sci. USA 2008, 105, 5537–5542. [Google Scholar] [CrossRef] [Green Version]
- Ziraldo, M.; Bidart, J.E.; Prato, C.A.; Tribulatti, M.V.; Zamorano, P.; Mattion, N.; D’Antuono, A.L. Optimized adenoviral vector that enhances the assembly of fmdv o1 virus-like particles in situ increases its potential as vaccine for serotype o viruses. Front. Microbiol. 2020, 11, 591019. [Google Scholar] [CrossRef]
- Fernandez-Sainz, I.; Medina, G.N.; Ramirez-Medina, E.; Koster, M.J.; Grubman, M.J.; de Los Santos, T. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against fmdv o1 manisa in swine. Virology 2017, 502, 123–132. [Google Scholar] [CrossRef]
- Neilan, J.G.; Schutta, C.; Barrera, J.; Pisano, M.; Zsak, L.; Hartwig, E.; Rasmussen, M.V.; Kamicker, B.J.; Ettyreddy, D.; Brough, D.E.; et al. Efficacy of an adenovirus-vectored foot-and-mouth disease virus serotype a subunit vaccine in cattle using a direct contact transmission model. BMC Veter. Res. 2018, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, G.; Gao, X.; Zhang, Z.; Liu, Y.; Liu, Q.; Chatel, J.M.; Jiang, Y.; Wang, C. Recombinant invasive lactobacillus plantarum expressing fibronectin binding protein a induce specific humoral immune response by stimulating differentiation of dendritic cells. Benef. Microbes 2019, 10, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Pan, L.; Zhou, P.; Lv, J.; Zhang, Z.; Wang, Y.; Zhang, Y. Protection against foot-and-mouth disease virus in guinea pigs via oral administration of recombinant lactobacillus plantarum expressing vp1. PLoS ONE 2015, 10, e0143750. [Google Scholar] [CrossRef] [PubMed]
- Biasino, W.; De Zutter, L.; Mattheus, W.; Bertrand, S.; Uyttendaele, M.; Van Damme, I. Correlation between slaughter practices and the distribution of salmonella and hygiene indicator bacteria on pig carcasses during slaughter. Food Microbiol. 2018, 70, 192–199. [Google Scholar] [CrossRef]
Types | Name | Characteristics | Origin |
---|---|---|---|
Plasmids | pET28a(+) | Expression vector, KanR | Novagene |
pRECN | derived from pET28a(+), with strong expression of promoter recN from E. coli | [38] | |
pRECN-VP1 | derived from pRECN with VP1 gene | in this study | |
Strains | KST0666 | attenuated Salmonella | in this study |
KST0667 | KST0666 harboring pET28a(+) | in this study | |
KST0668 | KST0666 harboring pRECN | in this study | |
KST0669 | KST0666 harboring pRECN-VP1 | in this study | |
LT2 | Salmonella Typhimurium | [39] | |
ST454 | Salmonella Typhimurium clinical strain isolated from pigs | in this study |
Primers | Sequence (5′–3′) |
---|---|
recN-F | AAC CAT GGT TAA TAT CCG CAA TAC AC |
recN-R | TTG AAT TCT GTG CAT TCC TCT CCC |
VP1 amplification-F | AAG AAT TCA CTA CTT CGA CGG GGG AAA GCG |
VP1 amplification-R | GGC GGT TAA ACA GAG CTT AAC AAG TGA GCG GCC GCA A |
VP1 diagnosis-F | CCG GTT ACT GCG ACA CTA GT |
VP1 diagnosis-R | TTT AAC CGG CGC CAC AAT TT |
VP1-RT-PCR-F1 | GAT CCG GTT ACT GCG ACT GT |
VP1-RT-PCR-R1 | ACA ATA GGT TTC CGC CCG TT |
Mutation Type | Deletion | Insertion | Point | Total |
---|---|---|---|---|
Silent | 0 | 0 | 4 | 4 |
Missense | 0 | 0 | 7 | 7 |
Nonsense | 0 | 0 | 1 | 1 |
Frameshift | 2 | 1 | 0 | 3 |
Non-frameshift | 1 | 0 | 0 | 1 |
Total | 3 | 1 | 12 | 16 |
Protein ID | Position | Homologous Protein | Mutant Type |
---|---|---|---|
ST454_00059 | 55692 | Putative protease SohB | inframe deletion |
ST454-00105 | 108541 | Respiratory nitrate reductase 1 alpha chain | synonymous variant |
ST454_00266 | 285135 | Chemotaxis protein CheA | synonymous variant |
ST454-00371 | 395359 | Cobalt-precorrin-7 C(5)-methyltransferase | synonymous variant |
ST454-00871 | 888709 | Anaerobic dimethyl sulfoxide reductase chain B | missense variant |
Non-coding region | 1471061 | frameshift variant | |
ST454-02089 | 2175005 | Hypothetical protein | missense variant |
ST454-02736 | 2873993 | Bifunctional transcriptional activator/DNA repair enzyme AdaA | missense variant |
ST454-02754 | 2892634 | Hypothetical protein | missense variant |
ST454-02790 | 2937098 | Lipopolysaccharide export system permease protein LptG | missense variant |
ST454-03046 | 3209927 | Secretion monitor | missense variant |
ST454-03672 | 3848803 | Putative lipoprotein ChiQ | synonymous variant |
Non-coding region | 4023820 | frameshift variant | |
ST454-04101 | 4326390 | O-acetyl-ADP-ribose deacetylase | nonsense |
ST454-04336 | 4590924 | Hypothetical protein | missense variant |
ST454-04577 | 4819484 | Ribulose-phosphate 3- epimerase | frameshift variant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, Y.; Ji, H.J.; Guo, H.; Lim, J.H.; Byun, E.-B.; Kim, W.S.; Seo, H.S. Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-Like Particles. Vaccines 2021, 9, 22. https://doi.org/10.3390/vaccines9010022
Zhi Y, Ji HJ, Guo H, Lim JH, Byun E-B, Kim WS, Seo HS. Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-Like Particles. Vaccines. 2021; 9(1):22. https://doi.org/10.3390/vaccines9010022
Chicago/Turabian StyleZhi, Yong, Hyun Jung Ji, Huichen Guo, Jae Hyang Lim, Eui-Baek Byun, Woo Sik Kim, and Ho Seong Seo. 2021. "Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-Like Particles" Vaccines 9, no. 1: 22. https://doi.org/10.3390/vaccines9010022