Depletion of CD8αβ+ T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek’s Disease with Respect to Tumor Incidence and Vaccinal Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. LC-4 Hybridoma Culture
2.2. Purification and Characterization of Anti-Chicken CD8 mAb
2.3. Characterization of Anti-CD8 mAb Binding Activity
2.4. Birds
2.5. Viruses
2.6. Optimization of Route and Dosage for CD8 Depletion In Vivo
2.7. Determination of CD3+CD4+ T Cells and CD8αβ+ T Cells
2.8. Measurement of Vaccinal Protection
3. Results
3.1. Production of Anti-Chicken CD8 mAb by Culturing LC-4 Hybridoma Cells
3.2. Binding Activity of Anti-CD8 mAb to Chicken CD8 T Cells
3.3. IV Injection is the Better Route of Injection to Deplete Chicken CD8+ T Cells Using Anti-Chicken CD8 mAb
3.4. Proportion of CD4+ and CD8αβ+ T Cells in Normal and CD8 Depleted Chickens after Vaccinations
3.5. CD8+ T Cells Play an Important Role for MD Resistant and Vaccinal Protection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, P.; Pamer, E.G. CD8 T cell responses to infectious pathogens. Annu. Rev. Immunol. 2003, 21, 29–70. [Google Scholar] [CrossRef]
- Woodworth, J.S.M.; Behar, S.M. Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit. Rev. Immunol. 2012, 26, 317–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Libero, G.; Flesch, I.; Kaufmann, S.H.E. Mycobacteria-reactive Lyt-2+ T cell lines. Eur. J. Immunol. 2007, 18, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Koller, B.; Triebold, K.J.; Goldstein, M.M.; Bloom, B.R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 2006, 89, 12013–12017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stover, C.K.; De La Cruz, V.F.; Fuerst, T.R.; Burlein, J.E.; Benson, L.A.; Bennett, L.T.; Bansal, G.P.; Young, J.F.; Lee, M.H.; Hatfull, G.F.; et al. New use of BCG for recombinant vaccines. Nature 1991, 351, 456–460. [Google Scholar] [CrossRef]
- Mittrücker, H.W.; Köhler, A.; Kaufmann, S.H.E. Characterization of the murine T-lymphocyte response to Salmonella enterica serovar typhimurium infection. Infect. Immun. 2002, 70, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Lo, W.; Ong, H.; Metcalf, E.S.; Mark, J. T cell responses to Gram-negative intracellular bacterial pathogens: A role for CD8 + T cells in immunity to Salmonella infection and the involvement of MHC Class Ib Molecules. J. Immunol. 1999, 162, 5398–5406. [Google Scholar] [PubMed]
- Lenz, L.L.; Butz, E.A.; Bevan, M.J. Requirements for bone marrow–derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J. Exp. Med. 2002, 192, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Khanna, K.M.; Chen, X.; Fink, D.J.; Hendricks, R.L. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med. 2000, 191, 1459–1466. [Google Scholar] [CrossRef] [Green Version]
- Heath, W.R.; Jones, C.M.; Smith, C.M.; Carbone, F.R.; Mueller, S.N. Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med. 2002, 195, 651–656. [Google Scholar]
- Coles, R.M.; Mueller, S.N.; Heath, W.R.; Carbone, F.R.; Brooks, A.G. Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol. 2002, 168, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsui, L.V.; Guidotti, L.G.; Ishikawa, T.; Chisari, F.V. Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc. Natl. Acad. Sci. USA 2006, 92, 12398–12402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidotti, L.G.; Ishikawa, T.; Hobbs, M.V.; Matzke, B.; Schreiber, R.; Chisari, F.V. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996, 4, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Cannon, M.J.; Openshaw, P.J.; Askonas, B.A. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J. Exp. Med. 1988, 168, 1163–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, A.B.; Connors, M.; Firestone, C.Y.; Morse, H.C.; Murphy, B.R. The cytolytic activity of pulmonary CD8+ lymphocytes, induced by infection with a vaccinia virus recombinant expressing the M2 protein of respiratory syncytial virus (RSV), correlates with resistance to RSV infection in mice. J. Virol. 1993, 67, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.R.; Sedegah, M.; Beaudoin, R.L.; Miller, L.H.; Good, M.F. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl. Acad. Sci. USA 1988, 85, 573–576. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; Maryanski, J.L.; Corradin, G.; Nussenzweig, R.S.; Nussenzweig, V.; Zavala, F. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 1989, 341, 323–326. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Cordey, A.S.; Arreaza, G.; Corradin, G.; Romero, P.; Maryanski, J.L.; Nussenzweig, R.S.; Zavala, F. CD8+ cytolytic T cell clones derived against the Plasmodium yoelii circumsporozoite protein protect against malaria. Int. Immunol. 1991, 3, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Khusmith, S.; Sedegah, M.; Hoffman, S.L. Complete protection against Plasmodium yoelii by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing sporozoite surface protein 2. Infect. Immun. 1994, 62, 2979–2983. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Ely, K.H.; Kasper, L.H. Antigen-specific CD8+ T cell clone protects against acute Toxoplasma gondii infection in mice. J. Immunol. 1994, 152, 1856–1860. [Google Scholar]
- Tarleton, R.L. Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J. Immunol. 1994, 144, 717–724. [Google Scholar]
- Mester, J.C.; Rouse, B.T. The mouse model and understanding immunity to herpes simplex virus. Rev. Infect. Dis. 1991, 13 (Suppl. 11), S935–S945. [Google Scholar] [CrossRef]
- Mester, J.C.; Highlander, S.L.; Osmand, A.P.; Glorioso, J.C.; Rouse, B.T. Herpes simplex virus type 1-specific immunity induced by peptides corresponding to an antigenic site of glycoprotein B. J. Virol. 1990, 64, 5277–5283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schat, K.A.; Xing, Z. Specific and nonspecific immune responses to Marek’s disease virus. Dev. Comp. Immunol. 2000, 24, 201–221. [Google Scholar] [CrossRef]
- Markowski-Grimsrud, C.J.; Schat, K.A. Cytotoxic T lymphocyte responses to Marek’s disease herpesvirus-encoded glycoproteins. Vet. Immunol. Immunopathol. 2002, 90, 133–144. [Google Scholar] [CrossRef]
- Richerioux, N.; Blondeau, C.; Wiedemann, A.; Rémy, S.; Vautherot, J.F.; Denesvre, C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek’s disease virus. PLoS ONE 2012, 7, e44072. [Google Scholar] [CrossRef]
- Calnek, B.W. Marek’s disease vaccines. Dev. Biol. Stand. 1982, 52, 401–405. [Google Scholar]
- Davison, F.; Kaiser, P. Immunity to Marek’s disease. In Marek’s Disease; Davison, F., Nair, V., Eds.; Elsevier: New York, NY, USA, 2004; pp. 126–141. [Google Scholar]
- Omar, A.R.; Schat, K.A. Characterization of Marek’s disease herpesvirus-specific cytotoxic T lymphocytes in chickens inoculated with a non-oncogenic vaccine strain of MDV. Immunology 1997, 90, 579–585. [Google Scholar] [CrossRef]
- Kondo, T.; Hattori, M.; Kodama, H.; Onuma, M.; Mikami, T. Characterization of two monoclonal antibodies which recognize different subpopulations of chicken T lymphocytes. Jpn. J. Vet. Res. 1990, 38, 11–17. [Google Scholar]
- Kondo, T.; Hattori, M.; Kodama, H.; Onuma, M.; Mikami, T. Production and characterization of monoclonal antibodies against chicken lymphocyte surface antigens. Nihon Juigaku Zasshi. 1990, 52, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.R.; Schat, K.A. Syngeneic Marek’s disease virus (MDV)-specific cell-mediated immune responses against immediate early, late, and unique MDV proteins. Virology 1996, 222, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.R.; Schat, K.A. Cytotoxic T lymphocytes response in chickens immunized with a recombinant fowlpox virus expressing Marek’s disease herpesvirus glycoprotein B. Vet Immunol. Immunopathol. 1998, 62, 73–82. [Google Scholar] [CrossRef]
- Sarson, A.J.; Abdul-Careem, M.F.; Zhou, H.; Sharif, S. Transcriptional analysis of host responses to Marek’s disease viral Infection. Viral. Immunol. 2006, 19, 747–758. [Google Scholar] [PubMed]
- Morimura, T.; Cho, K.O.; Kudo, Y.; Hiramoto, Y.; Ohashi, K.; Hattori MSugimoto, C.; Onuma, M. Anti-viral and anti-tumor effects induced by an attenuated Marek’s disease virus in CD4- or CD8-deficient chickens. Arch. Virol. 1999, 144, 1809–1818. [Google Scholar] [CrossRef]
- Morimura, T.; Ohashi, K.; Sugimoto, C.; Onuma, M. Pathogenesis of Marek’s disease (MD) and possible mechanisms of immunity induced by MD vaccine. J. Vet. Med. Sci. 1998, 60, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schat, K.A. Marek’s disease: A model for protection against herpesvirus-induced tumours. Cancer Surv. 1987, 6, 1–37. [Google Scholar] [PubMed]
- Yokoyama, W.M. Monoclonal antibody supernatant and ascites fluid production. Curr. Prot. Immun. 2001, 40, 2.6.1–2.6.9. [Google Scholar]
- Umthong, S.; Dunn, J.R.; Cheng, H.H. Towards a mechanistic understanding of the synergistic response induced by bivalent Marek’s disease vaccines to prevent lymphomas. Vaccine 2019, 7, 6397–6404. [Google Scholar] [CrossRef]
- Witter, R.L. New serotype 2 and attenuated serotype 1 Marek’s disease vaccine viruses: Comparative efficacy. Avian Dis. 1987, 31, 752–765. [Google Scholar] [CrossRef]
Group | Vaccine | CD8 Depletion | Challenge (5 DPV) | Number of Chickens |
---|---|---|---|---|
1 | Unvaccinated | No | No | 17 |
2 | Unvaccinated | No | 1000 PFU of Md5 | 17 |
3 | SB-1 | No | 17 | |
4 | HVT | No | 17 | |
5 | SB-1+HVT | No | 17 | |
6 | Unvaccinated | Yes | No | 17 |
7 | Unvaccinated | Yes | 1000 PFU of Md5 | 17 |
8 | SB-1 | Yes | 17 | |
9 | HVT | Yes | 17 | |
10 | SB-1+HVT | Yes | 17 | |
Total number of chickens | 170 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umthong, S.; Dunn, J.R.; Cheng, H.H. Depletion of CD8αβ+ T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek’s Disease with Respect to Tumor Incidence and Vaccinal Protection. Vaccines 2020, 8, 557. https://doi.org/10.3390/vaccines8040557
Umthong S, Dunn JR, Cheng HH. Depletion of CD8αβ+ T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek’s Disease with Respect to Tumor Incidence and Vaccinal Protection. Vaccines. 2020; 8(4):557. https://doi.org/10.3390/vaccines8040557
Chicago/Turabian StyleUmthong, Supawadee, John R. Dunn, and Hans H. Cheng. 2020. "Depletion of CD8αβ+ T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek’s Disease with Respect to Tumor Incidence and Vaccinal Protection" Vaccines 8, no. 4: 557. https://doi.org/10.3390/vaccines8040557