Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines
Abstract
:1. Introduction
2. The Concept
2.1. A Priori Concerns Regarding Possible Obstacles to the Successful Development of RCCVs
2.2. Note on Additional Expected Advantages of RCCVs
3. Development of RCCVs
3.1. RCCVs Controlled by Heat
3.2. RCCVs Dually Controlled by Heat and a Drug (Antiprogestin)
4. Immune Responses to Activated RCCVs
4.1. Anti-Herpetic Immune Response
4.2. Immune Response to a Vectored Antigen of Another Pathogen
5. Further Thoughts—Conclusions
5.1. Additional Thoughts on the Antiprogestin Co-Control of RCCVs
5.2. RCCVs Co-Controlled by an SMR Other Than an Antiprogestin
5.3. Reactivation from Quiescence in Infected Nerve Cells
5.4. How Could RCCV-Based Vaccination Be Practiced?
Author Contributions
Funding
Conflicts of Interest
References
- Petrovski, N. Comparative safety of vaccine adjuvants: A summary of current evidence and future needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, M.L. The historic feud over polio vaccine: How could a killed vaccine contain a natural disease? West J. Med. 1999, 171, 271–273. [Google Scholar] [PubMed]
- The Immunological Basis for Immunization Series/Module 6: Polymyelitis. Available online: www.who.int/ihr/polio1993en.pdf (accessed on 8 March 2020).
- Stern, A.M.; Markel, H. The history of vaccines and immunization: Familiar patterns, new challenges. Health Aff. 2005, 24, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Meissner, H.C.; Strebel, P.M.; Orenstein, W.A. Measles vaccines and the potential for worldwide eradication of measles. Pediatrics 2004, 114, 1065–1069. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Orenstein, W.A. Vaccines; Saunders: Philadelphia, PA, USA, 2004. [Google Scholar]
- Peng, B.; Wang, L.R.; Gomez-Roman, V.R.; Davis-Warren, A.; Montefiori, D.C.; Kalyanaraman, V.S.; Venzon, D.; Zhao, J.; Kan, E.; Rowell, T.J.; et al. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies. J. Virol. 2005, 79, 10200–10209. [Google Scholar] [CrossRef][Green Version]
- Huang, X.; Lu, B.; Yu, W.; Fang, Q.; Liu, L.; Zhuang, K.; Shen, T.; Wang, H.; Tian, P.; Zhang, L.; et al. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PLoS ONE 2009, 4, e4180. [Google Scholar] [CrossRef][Green Version]
- Liu, H.; Yu, X.; Tang, X.; Wang, H.; Ouyang, W.; Zhou, J.; Chen, Z. The route of inoculation determines the tissue tropism of modified vaccinia Tiantan expressing the spike glycoprotein of SARS-CoV in mice. J. Med. Virol. 2010, 82, 727–734. [Google Scholar] [CrossRef]
- Halford, W.P.; Weisend, C.; Grace, J.; Soboleski, M.; Carr, D.J.; Balliet, J.W.; Imai, Y.; Margolis, T.P.; Gebhardt, B.M. ICP0 antagonizes Stat I-dependent repression of herpes simplex virus: Implications for the regulation of viral latency. Virol. J. 2006, 3, 44. [Google Scholar] [CrossRef][Green Version]
- Voellmy, R.; Bloom, D.C.; Vilaboa, N. A novel approach for addressing diseases not yielding to effective vaccination? Immunization by replication-competent controlled virus. Expert Rev. Vaccines. 2015, 14, 637–651. [Google Scholar] [CrossRef]
- Roizman, B. The family Herpesviridae. A brief introduction. In Fields Virology; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott, Williams & Wilkins: Philadelphia, PA, USA, 1996. [Google Scholar]
- Roizman, B. Herpes Simplex Viruses and Their Replication; Williams & Wilkins: Philadelphia, PA, USA, 1996. [Google Scholar]
- Lou, E. Oncolytic herpes viruses as a potential mechanism for cancer therapy. Acta Oncol. 2003, 42, 660–671. [Google Scholar] [CrossRef][Green Version]
- Bosniak, L.; Miranda-Saksena, M.; Koelle, D.M.; Boadle, R.A.; Jones, C.A.; Cunningham, A.L. Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J. Immunol. 2005, 174, 2220–2227. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Koyanagi, N.; Ogawa, R.; Shindo, K.; Suenaga, T.; Sato, A.; Arii, J.; Kato, A.; Kiyono, H.; Arase, H.; et al. Us3 Kinase Encoded by Herpes Simplex Virus 1 Mediates Downregulation of Cell Surface Major Histocompatibility Complex Class I and Evasion of CD8+ T Cells. PLoS ONE 2013, 8, e72050. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Früh, K.; Ahn, K.; Djaballah, H.; Sempé, P.; van Endert, P.M.; Tampé, R.; Peterson, P.A.; Yang, Y. A viral inhibitor of peptide transporters for antigen presentation. Nature 1995, 375, 415–418. [Google Scholar] [CrossRef]
- Ahn, K.; Meyer, T.H.; Uebel, S.; Sempé, P.; Djaballah, H.; Yang, Y.; Peterson, P.A.; Früh, K.; Tampé, R. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J. 1996, 15, 3247–3255. [Google Scholar] [CrossRef] [PubMed]
- Tigges, M.A.; Leng, S.; Johnson, D.C.; Burke, R.L. Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2- infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. J. Immunol. 1996, 156, 3901–3910. [Google Scholar] [PubMed]
- Van Montfoort, N.; van der Aa, E.; Woltman, A.M. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines. Front. Immunol. 2014, 5, 182. [Google Scholar] [CrossRef][Green Version]
- Carriere, J.; Rao, Y.; Liu, Q.; Lin, X.; Zhao, J.; Feng, P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front. Microbiol. 2019, 10, 2647. [Google Scholar] [CrossRef]
- Su, C.; Zhan, G.; Zheng, C. Evasion of host antiviral innate immunity by HSV-1, an update. Virol. J. 2016, 13, 38. [Google Scholar] [CrossRef][Green Version]
- Xu, X.; Zhang, Y.; Li, Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev. Med. Virol. 2019, 29, e2054. [Google Scholar] [CrossRef][Green Version]
- L’Huillier, A.C.; Posfay-Barbe, K.M. Life Viral Vaccines in Immunocompromised Patients. Fut. Virol. 2014, 9, 161–171. [Google Scholar] [CrossRef]
- Loudon, P.T.; Blakeley, D.M.; Boursnell, M.E.; Day, D.A.; Duncan, I.A.; Lowden, R.C.; McLean, C.S.; Martin, G.; Miller, J.C.; Shaw, M.L. Preclinical safety testing of DISC-hGMCSF to support phase I clinical trials in cancer patients. J. Gene Med. 2001, 3, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Vilaboa, N.; Boré, A.; Martin-Saavedra, F.; Bayford, M.; Winfield, N.; Firth-Clark, S.; Kirton, S.B.; Voellmy, R. New inhibitor targeting human transcription factor HSF1: Effects on the heat shock response and tumor cell survival. Nucleic Acids Res. 2017, 45, 5797–5817. [Google Scholar] [CrossRef][Green Version]
- DiDomenico, B.J.; Bugaisky, G.E.; Lindquist, S. The Heat Shock Response Is Self-Regulated at Both the Transcriptional and Posttranscriptional Levels. Cell 1982, 31, 593–603. [Google Scholar] [CrossRef]
- Raychaudhuri, S.; Loew, C.; Körner, R.; Pinkert, S.; Theis, M.; Hayer-Hartl, M. Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell 2014, 156, 975–985. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Voellmy, R.; Ahmed, A.; Schiller, P.; Bromley, P.; Rungger, D. Isolation and functional analysis of a human 70′000 dalton heat shock protein gene segment. Proc. Natl. Acad. Sci. USA 1985, 82, 4949–4953. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dreano, M.; Brochot, J.; Meyers, A.; Cheng-Meyer, C.; Rungger, D.; Voellmy, R.; Bromley, P. High-level, heat-regulated synthesis of proteins in eukaryotic cells. Gene 1986, 49, 1–8. [Google Scholar] [CrossRef]
- Voellmy, R.; Zürcher, O.; Zürcher, M.; de Viragh, P.A.; Hall, A.K.; Roberts, S.M. Targeted heat activation of HSP promoters in the skin of mammalian animals and humans. Cell Stress Chaperones. 2018, 23, 455–466. [Google Scholar] [CrossRef]
- Guilhon, E.; Voisin, P.; de Zwart, J.A.; Quesson, B.; Salomir, R.; Maurange, C.; Bouchaud, V.; Smirnov, P.; de Verneuil, H.; Vekris, A.; et al. Spatial and temporal control of transgene expression in vivo using a heat-sensitive promoter and MRI-guided focused ultrasound. J. Gene Med. 2003, 5, 333–342. [Google Scholar] [CrossRef]
- O’Connell-Rodwell, C.E.; Mackanos, M.A.; Simanovskii, D.; Cao, Y.A.; Bachmann, M.H.; Schwettman, H.A.; Contag, C.H. In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. J. Biomed. Opt. 2008, 13, 030501. [Google Scholar] [CrossRef][Green Version]
- Wilmink, G.J.; Opalenik, S.R.; Backham, J.T.; Mackanos, M.A. In vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin. J. Biomed. Opt. 2008, 13, 054066. [Google Scholar] [CrossRef][Green Version]
- Sajjadi, A.Y.; Mitra, K.; Grace, M. Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: Assessment of thermal damage and healing. Med. Eng. Phys. 2013, 35, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Vilaboa, N.; Fenna, M.; Munson, J.; Roberts, S.M.; Voellmy, R. Novel gene switches for targeted and timed expression of proteins of interest. Mol. Ther. 2005, 12, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Burcin, M.M.; Schiedner, G.; Kochanek, S.; Tsai, S.Y.; O’Malley, B.W. Adenovirus-mediated regulable target gene expression in vivo. Proc. Natl. Acad. Sci. USA 1999, 96, 355–360. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ye, X.; Schillinger, K.; Burcin, M.M.; Tsai, S.Y.; O’Malley, B.W. Ligand-inducible transgene regulation for gene therapy. Methods Enzymol. 2002, 346, 551–561. [Google Scholar] [PubMed]
- Bloom, D.C.; Feller, J.; McAnany, P.; Vilaboa, N.; Voellmy, R. Replication-competent controlled herpes simplex virus. J. Virol. 2015, 89, 10668–10679. [Google Scholar] [CrossRef][Green Version]
- Bloom, D.C.; Tran, R.K.; Feller, J.; Voellmy, R. 2018. Immunization by replication-competent controlled herpesvirus vectors. J. Virol. 2018, 92, e00616-18. [Google Scholar] [CrossRef][Green Version]
- Voellmy, R.; Bloom, D.C.; Vilaboa, N.; Feller, J. Development of recombinant HSV-based vaccine vectors. Methods Mol. Biol. 2017, 1581, 55–78. [Google Scholar]
- Kawaoka, Y. Equine H7N7 Influenza A Viruses Are Highly Pathogenic in Mice without Adaptation: Potential Use as an Animal Model. J. Virol. 1991, 65, 3891. [Google Scholar] [CrossRef][Green Version]
- Odejinmi, F.; Oliver, R.; Mallick, R. Is ulipristal acetate the new drug of choice for the medical management of uterine fibroids? Res ipsa loquitur? Women’s Health 2017, 13, 98–105. [Google Scholar] [CrossRef][Green Version]
- Donnez, J.; Courtoy, G.E.; Donnez, O. Marie-Madeleine Dolmans Ulipristal acetate for the management of large uterine fibroids associated with heavy bleeding: A review. Reprod. Biomed. Online 2018, 37, 216–223. [Google Scholar] [CrossRef][Green Version]
- Piecak, K.; Milart, P.; Woźniakowska, E.; Paszkowski, T. Ulipristal acetate as a treatment option for uterine fibroids. Menopause Rev. 2017, 16, 133–136. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Assessment Report on Provisional Measures. Available online: https://www.ema.europa.eu/en/documents/referral/esmya-article-20-procedure-assessment-report-provisional-measures_en.pdf (accessed on 7 April 2020).
- Esmya: New Measures to Minimise Risk of Rare but Serious Liver Injury. Available online: https://www.ema.europa.eu/en/documents/press-release/esmya-new-measures-minimise-risk-rare-serious-liver-injury_en.pdf (accessed on 7 April 2020).
- Esmya (Ulipristal Acetate) and Risk of Serious Liver Injury: New Restrictions to Use and Requirements for Liver Function Monitoring before, during, and after Treatment. Available online: https://www.gov.uk/drug-safety-update/esmya-ulipristal-acetate-and-risk-of-serious-liver-injury-new-restrictions-to-use-and-requirements-for-liver-function-monitoring-before-during-and-after-treatment#eu-review-of-risk-of-serious-liver-injury (accessed on 7 April 2020).
- FDA Rejects Allergan’s Uterine Fibroid Treatment Following EMA Concerns Over Liver Damage. Available online: https://www.biospace.com/article/fda-rejects-allergan-s-uterine-fibroid-treatment-following-ema-concerns-over-liver-damage/ (accessed on 7 April 2020).
- Based on Animal Tox Studies, Bayer Halts Enrollment in Uterine Fibroids Human Trial. Available online: https://www.biospace.com/article/bayer-halts-enrollment-in-uterine-fibroids-trial/ (accessed on 7 April 2020).
- Schlaff, W.D.; Ackerman, R.T.; Al-Hendy, A.; Archer, D.F.; Barnhart, K.T.; Bradley, L.D.; Carr, B.R.; Feinberg, E.C.; Hurtado, S.M.; Kim, J.; et al. Elagolix for Heavy Menstrual Bleeding in Women with Uterine Fibroids. N. Engl. J. Med. 2020, 382, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Barra, F.; Seca, M.; Della, C.L.; Giampaolino, P.; Ferrero, S. Relugolix for the treatment of uterine fibroids. Drugs Today 2019, 55, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Relugolix: First Global Approval. Drugs 2019, 79, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Vilaboa, N.; Voellmy, R. Gene and Cell Therapy: Therapeutic Mechanisms and Strategies; Smyth Templeton, N., Ed.; CRC Press: Boca Raton, FL, USA, 2015; Chapter 25; pp. 627–674. [Google Scholar]
- Taylor, J.L.; Rohatgi, P.; Spencer, H.T.; Doyle, D.F.; Azizi, B. Characterization of a molecular switch system that regulates gene expression in mammalian cells through a small molecule. BMC Biotechnol. 2010, 10, 15. [Google Scholar] [CrossRef][Green Version]
- Chockalingam, K.; Chen, Z.; Katzenellenbogen, J.A.; Zhao, H. Directed evolution of specific receptor-ligand pairs for use in the creation of gene switches. Proc. Natl. Acad. Sci. USA 2005, 102, 5691–5696. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liang, J.; McLachlan, M.J.; Zhao, H. Orthogonal control of endogenous gene expression in mammalian cells using synthetic ligands. Biotechnol. Bioeng. 2013, 110, 1419–1429. [Google Scholar] [CrossRef]
- Suzich, J.B.; Cliffe, A.R. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018, 522, 81–91. [Google Scholar] [CrossRef]
- Kim, J.Y.; Mandarino, A.; Chao, M.V.; Mohr, I.; Wilson, A.C. Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons. PLoS Pathog. 2012, 8, e1002540. [Google Scholar] [CrossRef]
- Thompson, R.L.; Preston, C.M.; Sawtell, N.M. De Novo Synthesis of VP16 Coordinates the Exit from HSV Latency In Vivo. PLoS Pathog. 2009, 5, e1000352. [Google Scholar] [CrossRef]
- Miller, C.S.; Danaher, R.J.; Jacob, R.J. ICP0 Is Not Required for Efficient Stress-Induced Reactivation of Herpes Simplex Virus Type 1 from Cultured Quiescently Infected Neuronal Cells. J. Virol. 2006, 80, 3360–3368. [Google Scholar] [CrossRef] [PubMed][Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voellmy, R.; Bloom, D.C.; Vilaboa, N. Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines. Vaccines 2020, 8, 230. https://doi.org/10.3390/vaccines8020230
Voellmy R, Bloom DC, Vilaboa N. Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines. Vaccines. 2020; 8(2):230. https://doi.org/10.3390/vaccines8020230
Chicago/Turabian StyleVoellmy, Richard, David C Bloom, and Nuria Vilaboa. 2020. "Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines" Vaccines 8, no. 2: 230. https://doi.org/10.3390/vaccines8020230