Influenza Anti-Stalk Antibodies: Development of a New Method for the Evaluation of the Immune Responses to Universal Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Antigen
2.2. Pseudotype Production
2.3. Serum Samples
2.4. Hemagglutination Inhibition Assay
2.5. Single Radial Hemolysis Assay
2.6. Micro-Neutralization Assay
2.7. Enzyme-Linked Lectin Assay
2.8. Competitive ELISA for Anti-HA2 Antibody Detection
2.9. Statistical Analysis
3. Results
3.1. Serum Samples Were Selected Based on HI Titers
3.2. Different Levels of Anti-HA2-specific Antibody Responses Were Found in Pre-Vaccination Samples from Adults, but Not in Children
3.3. Correlation between Anti-HA1 ELISA and SRH- and MN-Antibody Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernelin-Cottet, C.; Deloizy, C.; Staněk, O.; Barc, C.; Bouguyon, E.; Urien, C.; Boulesteix, O.; Pezant, J.; Richard, C.-A.; Moudjou, M.; et al. A Universal Influenza Vaccine Can Lead to Disease Exacerbation or Viral Control Depending on Delivery Strategies. Front. Immunol. 2016, 7, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, A.E.; Shay, D.K.; Haber, P.; Iskander, J.K.; Uyeki, T.M.; Mootrey, G.; Bresee, J.S.; Cox, N.J.; Centers for Disease Control and Prevention; Advisory Committee on Immunization. Practices, and Prevention, Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2007. MMWR Recomm. Rep. 2007, 56, 1–54. [Google Scholar] [PubMed]
- Goodwin, K.; Viboud, C.; Simonsen, L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006, 24, 1159–1169. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Mendez, N.V.; Landin, A.M.; Blomberg, B.B. Effects of age on H1N1-specific serum IgG1 and IgG3 levels evaluated during the 2011–2012 influenza vaccine season. Immun. Ageing 2013, 10, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, J.M.; Hancock, K.; Xu, X. Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev. Anti-infective Ther. 2011, 9, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Finkenstädt, B.F.; Morton, A.; Rand, D.A. Modelling antigenic drift in weekly flu incidence. Stat. Med. 2005, 24, 3447–3461. [Google Scholar] [CrossRef]
- Ghendon, Y. Influenza surveillance. Bull. World Heal. Organ. 1991, 69, 509–515. [Google Scholar]
- WHO. Weekly epidemiological record. Wkly. Epidemiol. Rec. 2000, 75, 281–288. [Google Scholar]
- Degoot, A.M.; Adabor, E.S.; Chirove, F.; Ndifon, W. Predicting Antigenicity of Influenza A Viruses Using biophysical ideas. Sci. Rep. 2019, 9, 10218. [Google Scholar] [CrossRef] [Green Version]
- De Jong, J.C.; Beyer, W.E.; Palache, A.M.; Rimmelzwaan, G.F.; Osterhaus, A.D. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 2000, 61, 94–99. [Google Scholar] [CrossRef]
- Shapshak, P.; Chiappelli, F.; Somboonwit, C.; Sinnott, J. The Influenza Pandemic of 2009. Mol. Diagn. Ther. 2011, 15, 63–68. [Google Scholar] [CrossRef]
- Krammer, F.; Hai, R.; Yondola, M.; Tan, G.S.; Leyva-Grado, V.H.; Ryder, A.B.; Miller, M.S.; Rose, J.K.; Palese, P.; García-Sastre, A.; et al. Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets. J. Virol. 2014, 88, 3432–3442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombetta, C.M.; Marchi, S.; Manini, I.; Lazzeri, G.; Montomoli, E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev. Vaccines 2019, 18, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Neirynck, S.; DeRoo, T.; Saelens, X.; Vanlandschoot, P.; Jou, W.M.; Fiers, W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999, 5, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Monto, A.S.; Petrie, J.G.; Cross, R.T.; Johnson, E.; Liu, M.; Zhong, W.; Levine, M.; Katz, J.M.; Ohmit, S.E. Antibody to Influenza Virus Neuraminidase: An Independent Correlate of Protection. J. Infect. Dis. 2015, 212, 1191–1199. [Google Scholar] [CrossRef]
- Thompson, C.P.; Lourenço, J.; Walters, A.A.; Obolski, U.; Edmans, M.; Palmer, D.S.; Kooblall, K.; Carnell, G.W.; O’Connor, D.; Bowden, T.A.; et al. A naturally protective epitope of limited variability as an influenza vaccine target. Nat. Commun. 2018, 9, 3859. [Google Scholar] [CrossRef] [Green Version]
- Krammer, F.; Palese, P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr. Opin. Virol. 2013, 3, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palese, P.; Shaw, A.R. Orthomyxoviridae: The viruses and their replication. In Fields Virology, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Trombetta, C.M.; Perini, D.; Mather, S.; Temperton, N.; Montomoli, E. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines 2014, 2, 707–734. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, C.M.; Remarque, E.J.; Mortier, D.; Montomoli, E. Comparison of hemagglutination inhibition, single radial hemolysis, virus neutralization assays, and ELISA to detect antibody levels against seasonal influenza viruses. Influ. Other Respir. Viruses 2018, 12, 675–686. [Google Scholar] [CrossRef]
- Black, S.; Nicolay, U.; Vesikari, T.; Knuf, M.; Del Giudice, G.; Della Cioppa, G.; Tsai, T.; Clemens, R.; Rappuoli, R. Hemagglutination Inhibition Antibody Titers as a Correlate of Protection for Inactivated Influenza Vaccines in Children. Pediatr. Infect. Dis. J. 2011, 30, 1081–1085. [Google Scholar] [CrossRef]
- Shahid, Z.; Kleppinger, A.; Gentleman, B.; Falsey, A.R.; McElhaney, J.E. Clinical and immunologic predictors of influenza illness among vaccinated older adults. Vaccine 2010, 28, 6145–6151. [Google Scholar] [CrossRef] [Green Version]
- Neidich, S.D.; Green, W.D.; Rebeles, J.; Karlsson, E.A.; Schultz-Cherry, S.; Noah, T.L.; Chakladar, S.; Hudgens, M.G.; Weir, S.S.; Beck, M.A. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 2017, 41, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Gianchecchi, E.; Manenti, A.; Kistner, O.; Trombetta, C.; Manini, I.; Montomoli, E. How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions. Influ. Other Respir. Viruses 2019, 13, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Nachbagauer, R.; Stadlbauer, D.; Solórzano, A.; Berlanda-Scorza, F.; García-Sastre, A.; Palese, P.; Krammer, F.; Albrecht, R.A. Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Front. Immunol. 2019, 10, 756. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, H.; Rajendran, M.; Choi, A.; Sjursen, H.; Brokstad, K.A.; Cox, R.J.; Palese, P.; Krammer, F.; Nachbagauer, R. Influenza Virus Hemagglutinin Stalk-Specific Antibodies in Human Serum are a Surrogate Marker for In Vivo Protection in a Serum Transfer Mouse Challenge Model. mBio 2017, 8, e01463-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, P.; Schulman, J.; Young, J.; Palese, P. Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: Unmasking of cross-reactive HA2 determinants. Virology 1983, 126, 106–116. [Google Scholar] [CrossRef]
- Sagawa, H.; Ohshima, A.; Kato, I.; Okuno, Y.; Isegawa, Y. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J. Gen. Virol. 1996, 77, 1483–1487. [Google Scholar] [CrossRef] [PubMed]
- Wohlbold, T.J.; Nachbagauer, R.; Margine, I.; Tan, G.S.; Hirsh, A.; Krammer, F. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 2015, 33, 3314–3321. [Google Scholar] [CrossRef] [Green Version]
- Biuso, F.; Carnell, G.W.; Montomoli, E.; Temperton, N. A Lentiviral Pseudotype ELLA for the Measurement of Antibodies Against Influenza Neuraminidase. Bio-101 2018. [Google Scholar] [CrossRef]
- WHO. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; WHO: Geneva, Switzerland, 2011; 153p. [Google Scholar]
- Trombetta, C.M.; Perini, D.; Vitale, L.; Cox, R.J.; Stanzani, V.; Piccirella, S.; Montomoli, E. Validation of Single Radial Hemolysis assay: A reliable method to measure antibodies against influenza viruses. J. Immunol. Methods 2015, 422, 95–101. [Google Scholar] [CrossRef]
- Ainai, A.; Tamura, S.-I.; Suzuki, T.; Van Riet, E.; Ito, R.; Odagiri, T.; Tashiro, M.; Kurata, T.; Hasegawa, H. Intranasal vaccination with an inactivated whole influenza virus vaccine induces strong antibody responses in serum and nasal mucus of healthy adults. Hum. Vaccines Immunother. 2013, 9, 1962–1970. [Google Scholar] [CrossRef] [PubMed]
- Couzens, L.; Gao, J.; Westgeest, K.; Sandbulte, M.; Lugovtsev, V.; Fouchier, R.; Eichelberger, M. An optimized enzyme-linked lectin assay to measure influenza A virus neuraminidase inhibition antibody titers in human sera. J. Virol. Methods 2014, 210, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Interim results: State-specific influenza vaccination coverage—United States, August 2010–February 2011. MMWR. Morb. Mortal. Wkly. Rep. 2011, 60, 737–743. [Google Scholar]
- Zebedee, S.L.; Lamb, R.A. Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol. 1988, 62, 2762–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treanor, J.J.; Tierney, E.L.; Zebedee, S.L.; Lamb, R.A.; Murphy, B.R. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J. Virol. 1990, 64, 1375–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-N.; Lee, Y.-T.; Kim, M.-C.; Hwang, H.S.; Lee, J.S.; Kim, K.-H.; Kang, S.-M. Fc receptor is not required for inducing antibodies but plays a critical role in conferring protection after influenza M2 vaccination. Immunol. 2014, 143, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Quan, F.-S.; Kim, M.-C.; Lee, B.-J.; Song, J.-M.; Compans, R.W.; Kang, S.-M. Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virol. 2012, 430, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Okuno, Y.; Isegawa, Y.; Sasao, F.; Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 1993, 67, 2552–2558. [Google Scholar] [CrossRef] [Green Version]
- Krammer, F.; Palese, P. Universal influenza virus vaccines: Need for clinical trials. Nat. Immunol. 2014, 15, 3–5. [Google Scholar] [CrossRef]
- Bommakanti, G.; Citron, M.P.; Hepler, R.W.; Callahan, C.; Heidecker, G.J.; Najar, T.A.; Lu, X.; Joyce, J.G.; Shiver, J.W.; Casimiro, D.R.; et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl. Acad. Sci. USA 2010, 107, 13701–13706. [Google Scholar] [CrossRef] [Green Version]
- Hai, R.; Krammer, F.; Tan, G.S.; Pica, N.; Eggink, D.; Maamary, J.; Margine, I.; Albrecht, R.A.; Palese, P. Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains Derived from Different Subtypes. J. Virol. 2012, 86, 5774–5781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Clinical Data Needed to Support the Licensure of Seasonal Inactivated Influenza Vaccines. 2007. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-data-needed-support-licensure-seasonal-inactivated-influenza-vaccines (accessed on 12 January 2020).
- European Medicine Agency. Guideline on Influenza Vaccines. Guideline on Influenza Vaccines; European Medicine Agency: Amsterdam, The Netherlands, 2016; 31p. [Google Scholar]
- Wood, J.; Gaines-Das, R.; Taylor, J.; Chakraverty, P. Comparison of influenza serological techniques by international collaborative study. Vaccine 1994, 12, 167–174. [Google Scholar] [CrossRef]
- Van Damme, P.; Arnou, R.; Kafeja, F.; Fiquet, A.; Richard, P.; Thomas, S.; Meghlaoui, G.; Samson, S.I.; Ledesma, E. Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: A randomised comparative study. BMC Infect. Dis. 2010, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Russell, M.L.; Brewer, A.; Newton, J.; Singh, P.; Ward, B.J.; Loeb, M. Single radial hemolysis compared to haemagglutinin inhibition and microneutralization as a correlate of protection against influenza A H3N2 in children and adolescents. Influ. Other Respir. Viruses 2017, 11, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Auladell, M.; Jia, X.; Hensen, L.; Chua, B.; Fox, A.; Nguyen, T.H.O.; Doherty, P.C.; Kedzierska, K. Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Front. Immunol. 2019, 10, 1400. [Google Scholar] [CrossRef] [PubMed]
- Moody, M.A.; Zhang, R.; Walter, E.B.; Woods, C.W.; Ginsburg, G.S.; McClain, M.T.; Denny, T.N.; Chen, X.; Munshaw, S.; Marshall, D.J.; et al. H3N2 Influenza Infection Elicits More Cross-Reactive and Less Clonally Expanded Anti-Hemagglutinin Antibodies Than Influenza Vaccination. PLoS ONE 2011, 6, e25797. [Google Scholar] [CrossRef] [PubMed]
- Nayak, J.; Hoy, G.; Gordon, A. Influenza in Children. Cold Spring Harb. Perspect. Med. 2019. [Google Scholar] [CrossRef]
- Li, Y.; Myers, J.L.; Bostick, D.L.; Sullivan, C.B.; Madara, J.; Linderman, S.L.; Liu, Q.; Carter, D.M.; Wrammert, J.; Esposito, S.; et al. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. J. Exp. Med. 2013, 210, 1493–1500. [Google Scholar] [CrossRef]
- Leon, P.E.; He, W.; Mullarkey, C.E.; Bailey, M.J.; Miller, M.S.; Krammer, F.; Palese, P.; Tan, G.S. Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact. Proc. Natl. Acad. Sci. 2016, 113, E5944–E5951. [Google Scholar] [CrossRef] [Green Version]
- Cox, F.; Kwaks, T.; Brandenburg, B.; Koldijk, M.H.; Klaren, V.; Smal, B.; Korse, H.J.; Geelen, E.; Tettero, L.; Zuijdgeest, D.; et al. HA Antibody-Mediated FcgammaRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids. Front. Immunol. 2016, 7, 399. [Google Scholar] [CrossRef] [Green Version]
Subject | Dose | HI Titer | Competitive ELISA | ELLA Titer | SRH Area [mm2] | MN Titer | ||
---|---|---|---|---|---|---|---|---|
OD Stalk (HA2) | OD Head (HA1) | OD HA | ||||||
1 | Pre | 5 | 0.187 | 0.133 | 0.320 | 10 | 10.2 | 40 |
Post | 5 | 0.182 | 0.295 | 0.477 | 15 | 17.3 | 40 | |
2 | Pre | 5 | 0.133 | −0.018 | 0.116 | 5 | 11.3 | 20 |
Post | 40 | 0.220 | 0.069 | * 0.289 | 10 | 19.6 | 30 | |
3 | Pre | 5 | 0.281 | 0.022 | 0.303 | 10 | 2.256 | 20 |
Post | 40 | 0.391 | * 0.255 | * 0.647 | 80 | 2.256 | 20 | |
4 | Pre | 5 | 0.238 | 0.032 | 0.269 | 80 | 2.256 | 20 |
Post | 40 | 0.211 | 0.159 | 0.370 | 640 | 60.8 | 20 | |
5 | Pre | 160 | 0.723 | 1.164 | 1.887 | 160 | 38.5 | 40 |
Post | 320 | * 1.041 | * 1.834 | * 2.875 | 320 | 50.2 | 80 | |
6 | Pre | 5 | 0.341 | 0.059 | 0.400 | 5 | 2.256 | 40 |
Post | 1280 | 0.485 | * 1.464 | * 1.949 | 40 | 63.6 | 320 | |
7 | Pre | 5 | 0.452 | 0.039 | 0.491 | 20 | 2.256 | 20 |
Post | 1280 | * 1.499 | 0.113 | *1.612 | 160 | 63.6 | 40 | |
8 | Pre | 5 | 0.816 | 0.131 | 0.947 | 40 | 2.256 | 40 |
Post | 1280 | * 0.987 | * 2.371 | * 3.359 | 1280 | 107.5 | 640 |
Subject | Dose | HI Titer | Competitive ELISA | ELLA Titer | SRH Area [mm2] | MN Titer | ||
---|---|---|---|---|---|---|---|---|
OD Stalk (HA2) | OD Head (HA1) | OD HA | ||||||
1 | Pre | 5 | 0.006 | 0.007 | 0.014 | 5 | 2.256 | 40 |
Post | 80 | 0.039 | * 0.179 | * 0.219 | 120 | 21.2 | 80 | |
2 | Pre | 5 | −0.016 | 0.023 | 0.007 | 5 | 2.256 | 20 |
Post | 226.3 | * 0.040 | * 0.461 | * 0.501 | 10 | 38.5 | 80 | |
3 | Pre | 5 | 0.015 | 0.037 | 0.051 | 5 | 12.6 | 10 |
Post | 320 | 0.009 | * 0.521 | * 0.530 | 160 | 59.4 | 80 | |
4 | Pre | 5 | 0.016 | 0.044 | 0.060 | 5 | 2.256 | 40 |
Post | 380 | * 0.251 | * 0.824 | * 1.075 | 20 | 50.2 | 160 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manenti, A.; Maciola, A.K.; Trombetta, C.M.; Kistner, O.; Casa, E.; Hyseni, I.; Razzano, I.; Torelli, A.; Montomoli, E. Influenza Anti-Stalk Antibodies: Development of a New Method for the Evaluation of the Immune Responses to Universal Vaccine. Vaccines 2020, 8, 43. https://doi.org/10.3390/vaccines8010043
Manenti A, Maciola AK, Trombetta CM, Kistner O, Casa E, Hyseni I, Razzano I, Torelli A, Montomoli E. Influenza Anti-Stalk Antibodies: Development of a New Method for the Evaluation of the Immune Responses to Universal Vaccine. Vaccines. 2020; 8(1):43. https://doi.org/10.3390/vaccines8010043
Chicago/Turabian StyleManenti, Alessandro, Agnieszka Katarzyna Maciola, Claudia Maria Trombetta, Otfried Kistner, Elisa Casa, Inesa Hyseni, Ilaria Razzano, Alessandro Torelli, and Emanuele Montomoli. 2020. "Influenza Anti-Stalk Antibodies: Development of a New Method for the Evaluation of the Immune Responses to Universal Vaccine" Vaccines 8, no. 1: 43. https://doi.org/10.3390/vaccines8010043
APA StyleManenti, A., Maciola, A. K., Trombetta, C. M., Kistner, O., Casa, E., Hyseni, I., Razzano, I., Torelli, A., & Montomoli, E. (2020). Influenza Anti-Stalk Antibodies: Development of a New Method for the Evaluation of the Immune Responses to Universal Vaccine. Vaccines, 8(1), 43. https://doi.org/10.3390/vaccines8010043