SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond
Abstract
:1. The SLAM Family of Receptors
2. Immune Responses to Viral Infections
3. SLAMF1 (SLAM, CD150)
4. SLAMF2 (CD48)
5. SLAMF3 (Ly-9, CD229)
6. SLAMF4 (2B4, CD244)
7. SLAMF5 (CD84)
8. SLAMF6 (NTB-A, Ly-108, CD352)
9. SLAMF7 (CRACC, CS1, CD319)
10. SLAMF8 (BLAME, CD353)
11. SLAMF9 (SF2001, CD84H1)
12. Potential for Targeting SLAM Family of Receptors in HIV and Other Viral Infections
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. 2011, 29, 665–705. [Google Scholar] [CrossRef] [PubMed]
- Veillette, A. SLAM-family receptors: Immune regulators with or without SAP-family adaptors. Cold Spring Harb. Perspect. Biol. 2010, 2, a002469. [Google Scholar] [CrossRef] [PubMed]
- Tangye, S.G. XLP: Clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J. Clin. Immunol. 2014, 34, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Veillette, A. SLAM family receptors in normal immunity and immune pathologies. Curr. Opin. Immunol. 2016, 38, 45–51. [Google Scholar] [CrossRef] [PubMed]
- van Driel, B.J.; Liao, G.; Engel, P.; Terhorst, C. Responses to Microbial Challenges by SLAMF Receptors. Front. Immunol. 2016, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Bortoluci, K.R.; Medzhitov, R. Control of infection by pyroptosis and autophagy: Role of TLR and NLR. Cell. Mol. Life Sci. 2010, 67, 1643–1651. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 2010, 327, 291–295. [Google Scholar] [CrossRef]
- Mogensen, T.H.; Melchjorsen, J.; Larsen, C.S.; Paludan, S.R. Innate immune recognition and activation during HIV infection. Retrovirology 2010, 7, 54. [Google Scholar] [CrossRef]
- Veazey, R.S.; DeMaria, M.; Chalifoux, L.V.; Shvetz, D.E.; Pauley, D.R.; Knight, H.L.; Rosenzweig, M.; Johnson, R.P.; Desrosiers, R.C.; Lackner, A.A. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998, 280, 427–431. [Google Scholar] [CrossRef]
- Veazey, R.S.; Tham, I.C.; Mansfield, K.G.; DeMaria, M.; Forand, A.E.; Shvetz, D.E.; Chalifoux, L.V.; Sehgal, P.K.; Lackner, A.A. Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: Highly activated memory CD4(+) T cells are rapidly eliminated in early SIV infection in vivo. J. Virol. 2000, 74, 57–64. [Google Scholar] [CrossRef]
- Kahn, J.O.; Walker, B.D. Acute human immunodeficiency virus type 1 infection. N. Engl. J. Med. 1998, 339, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Grossman, Z.; Meier-Schellersheim, M.; E Paul, W.; Picker, L.J. Pathogenesis of HIV infection: What the virus spares is as important as what it destroys. Nat. Med. 2006, 12, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Boasso, A.; Shearer, G.M. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin. Immunol. 2008, 126, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Pollara, J.; Tomaras, G.D.; Haynes, B.F. Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection. J. Infect. Dis. 2017, 215 (Suppl. 3), S152–S159. [Google Scholar] [CrossRef]
- Rethi, B.; Gogolák, P.; Szatmari, I.; Veres, A.; Erdôs, E.; Nagy, L.; Rajnavölgyi, E.; Terhorst, C.; Lányi, A. SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood 2006, 107, 2821–2829. [Google Scholar] [CrossRef]
- Bleharski, J.R.; Niazi, K.R.; Sieling, P.A.; Cheng, G.; Modlin, R.L. Signaling lymphocytic activation molecule is expressed on CD40 ligand-activated dendritic cells and directly augments production of inflammatory cytokines. J. Immunol. 2001, 167, 3174–3181. [Google Scholar] [CrossRef]
- Wang, N.; Satoskar, A.; Faubion, W.; Howie, D.; Okamoto, S.; Feske, S.; Gullo, C.; Clarke, K.; Sosa, M.R.; Sharpe, A.H.; et al. The cell surface receptor SLAM controls T cell and macrophage functions. J. Exp. Med. 2004, 199, 1255–1264. [Google Scholar] [CrossRef]
- O’Connell, P.; Pepelyayeva, Y.; Blake, M.K.; Hyslop, S.; Crawford, R.B.; Rizzo, M.D.; Pereira-Hicks, C.; Godbehere, S.; Dale, L.; Gulick, P.; et al. SLAMF7 Is a Critical Negative Regulator of IFN-Alpha-Mediated CXCL10 Production in Chronic HIV Infection. J. Immunol. 2019, 202, 228–238. [Google Scholar] [CrossRef]
- Agod, Z.; Pázmándi, K.; Bencze, D.; Vereb, G.; Biró, T.; Szabó, A.; Rajnavölgyi, É.; Bacsi, A.; Engel, P.; Lanyi, A. Signaling Lymphocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of Interferon Regulatory Factor 8. Front. Immunol. 2018, 9, 62. [Google Scholar] [CrossRef]
- Wang, G.; Abadía-Molina, A.C.; Berger, S.B.; Romero, X.; O’Keeffe, M.S.; Rojas-Barros, D.I.; Aleman, M.; Liao, G.; Maganto-García, E.; Fresno, M.; et al. Cutting edge: Slamf8 is a negative regulator of Nox2 activity in macrophages. J. Immunol. 2012, 188, 5829–5832. [Google Scholar] [CrossRef]
- Dollt, C.; Michel, J.; Kloss, L.; Melchers, S.; Schledzewski, K.; Becker, K.; Sauer, A.; Krewer, A.; Koll, F.; Schmieder, A. The novel immunoglobulin super family receptor SLAMF9 identified in TAM of murine and human melanoma influences pro-inflammatory cytokine secretion and migration. Cell Death Dis. 2018, 9, 939. [Google Scholar] [CrossRef] [PubMed]
- Aldhamen, Y.A.; Seregin, S.S.; Schuldt, N.J.; Rastall, D.P.W.; Liu, C.-J.J.; Godbehere, S.; Amalfitano, A.; Liu, C.-J.J. Vaccines expressing the innate immune modulator EAT-2 elicit potent effector memory T lymphocyte responses despite pre-existing vaccine immunity. J. Immunol. 2012, 189, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Brenchley, J.M.; A Price, D.; Schacker, T.W.; E Asher, T.; Silvestri, G.; Rao, S.; Kazzaz, Z.; Bornstein, E.; Lambotte, O.; Altmann, D.; et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 2006, 12, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.B.; Romero, X.; Ma, C.; Wang, G.; A Faubion, W.; Liao, G.; Compeer, E.; Keszei, M.; Rameh, L.; Wang, N.; et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat. Immunol. 2010, 11, 920–927. [Google Scholar] [CrossRef] [PubMed]
- van Driel, B.; Wang, G.; Liao, G.; Halibozek, P.J.; Keszei, M.; O’Keeffe, M.S.; Bhan, A.K.; Wang, N.; Terhorst, C. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis. Int. Immunol. 2015, 27, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Boasso, A. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. Scientifica 2013, 2013, 580968. [Google Scholar] [CrossRef]
- Cha, L.; Berry, C.M.; Nolan, D.; Castley, A.; Fernández, S.; A French, M. Interferon-alpha, immune activation and immune dysfunction in treated HIV infection. Clin. Transl. Immunol. 2014, 3, e10. [Google Scholar] [CrossRef]
- Doyle, T.; Goujon, C.; Malim, M.H. HIV-1 and interferons: who’s interfering with whom? Nat. Rev. Microbiol. 2015, 13, 403–413. [Google Scholar] [CrossRef]
- Sever, L.; adomir, L.; Stirm, K.; Wiener, A.; Schottlender, N.; Lewinsky, H.; Barak, A.F.; Friedlander, G.; Ben-Dor, S.; Becker-Herman, S.; et al. SLAMF9 regulates pDC homeostasis and function in health and disease. Proc. Natl. Acad. Sci. USA 2019, 116, 16489–16496. [Google Scholar] [CrossRef]
- Maranon, C.; Desoutter, J.-F.; Hoeffel, G.; Cohen, W.; Hanau, D.; Hosmalin, A. Dendritic cells cross-present HIV antigens from live as well as apoptotic infected CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA 2004, 101, 6092–6097. [Google Scholar] [CrossRef]
- Kis-Toth, K.; Tsokos, G.C. Engagement of SLAMF2/CD48 prolongs the time frame of effective T cell activation by supporting mature dendritic cell survival. J. Immunol. 2014, 192, 4436–4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, S.; Fauci, A.S. B-cell responses to HIV infection. Immunol. Rev. 2017, 275, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.B.; Soni, C.; Chan, A.Y.; Domeier, P.P.; Abraham, T.; Limaye, N.; Khan, T.N.; Elias, M.J.; Chodisetti, S.B.; Wakeland, E.K.; et al. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. J. Immunol. 2015, 194, 4130–4143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, V.; Bloch, N.; Landau, N.R. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 2015, 16, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Pallikkuth, S.; De Armas, L.; Rinaldi, S.; Pahwa, S. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection. Front. Immunol. 2017, 8, 1380. [Google Scholar] [CrossRef] [PubMed]
- Veenhuis, R.T.; Freeman, Z.T.; Korleski, J.; Cohen, L.K.; Massaccesi, G.; Tomasi, A.; Boesch, A.W.; Ackerman, M.E.; Margolick, J.B.; Blankson, J.N.; et al. HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells. J. Clin. Investig. 2017, 127, 4352–4364. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Qiao, X.; Klasse, P.J.; Chiu, A.; Chadburn, A.; Knowles, D.M.; Moore, J.P.; Cerutti, A. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J. Immunol. 2006, 176, 3931–3941. [Google Scholar] [CrossRef] [Green Version]
- Shlapatska, L.M.; Mikhalap, S.V.; Berdova, A.G.; Zelensky, O.M.; Yun, T.J.; Nichols, K.E.; Clark, E.A.; Sidorenko, S.P. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 2001, 166, 5480–5487. [Google Scholar] [CrossRef] [Green Version]
- Tatsuo, H.; Ono, N.; Tanaka, K.; Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000, 406, 893–897. [Google Scholar] [CrossRef]
- Davidson, D.; Shi, X.; Zhang, S.; Wang, H.; Nemer, M.; Ono, N.; Ohno, S.; Yanagi, Y.; Veillette, A. Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in T(H)2 cytokine regulation. Immunity 2004, 21, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Zarama, A.; Pérez-Carmona, N.; Farré, D.; Tomic, A.; Borst, E.M.; Messerle, M.; Jonjic, S.; Engel, P.; Angulo, A. Cytomegalovirus m154 hinders CD48 cell-surface expression and promotes viral escape from host natural killer cell control. PLoS Pathog. 2014, 10, e1004000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartier, F.; Marcq, I.; Douam, F.; Ossart, C.; Regnier, A.; DeBuysscher, V.; Lavillette, D.; Bouhlal, H. The expression of the hepatocyte SLAMF3 (CD229) receptor enhances the hepatitis C virus infection. PLoS ONE 2014, 9, e99601. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vicente, P.; Farré, D.; Sánchez, C.; Alcamí, A.; Engel, P.; Angulo, A. Subversion of natural killer cell responses by a cytomegalovirus-encoded soluble CD48 decoy receptor. PLoS Pathog. 2019, 15, e1007658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duev-Cohen, A.; Bar-On, Y.; Glasner, A.; Berhani, O.; Ophir, Y.; Levi-Schaffer, F.; Mandelboim, M.; Mandelboim, O. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity. Oncotarget 2016, 7, 13093–13105. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, S.D.; Shin, H.; Haining, W.N.; Zou, T.; Workman, C.J.; Polley, A.; Betts, M.R.; Freeman, G.J.; Vignali, D.A.; Wherry, E.J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 2009, 10, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Raziorrouh, B.; Schraut, W.; Gerlach, T.; Nowack, D.; Grüner, N.H.; Ulsenheimer, A.; Zachoval, R.; Wächtler, M.; Spannagl, M.; Haas, J.; et al. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology 2010, 52, 1934–1947. [Google Scholar] [CrossRef]
- Schlaphoff, V.; Lunemann, S.; Suneetha, P.V.; Jaroszewicz, J.; Grabowski, J.; Dietz, J.; Helfritz, F.; Bektas, H.; Sarrazin, C.; Manns, M.P.; et al. Dual function of the NK cell receptor 2B4 (CD244) in the regulation of HCV-specific CD8+ T cells. PLoS Pathog. 2011, 7, e1002045. [Google Scholar] [CrossRef]
- Pacheco, Y.; McLean, A.P.; Rohrbach, J.; Porichis, F.; Kaufmann, D.E.; Kavanagh, D.G. Simultaneous TCR and CD244 signals induce dynamic downmodulation of CD244 on human antiviral T cells. J. Immunol. 2013, 191, 2072–2081. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Price, D.A.; Casazza, J.P.; Ferrari, G.; Nason, M.; Chattopadhyay, P.K.; Roederer, M.; Gostick, E.; Katsikis, P.D.; Douek, D.C.; et al. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection. Blood 2011, 117, 4805–4815. [Google Scholar] [CrossRef] [Green Version]
- Aldy, K.N.; Horton, N.C.; Mathew, P.A.; Mathew, S. 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes. Biochem. Biophys. Res. Commun. 2011, 405, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.H.; Sowrirajan, B.; Davis, Z.B.; Ward, J.P.; Campbell, E.M.; Planelles, V.; Barker, E. Degranulation of natural killer cells following interaction with HIV-1-infected cells is hindered by downmodulation of NTB-A by Vpu. Cell Host Microbe 2010, 8, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Misawa, N.; Fukuhara, M.; Iwami, S.; An, D.S.; Ito, M.; Koyanagi, Y. Vpu augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice. J. Virol. 2012, 86, 5000–5013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolduan, S.; Hubel, P.; Reif, T.; Lodermeyer, V.; Höhne, K.; Fritz, J.V.; Sauter, D.; Kirchhoff, F.; Fackler, O.T.; Schindler, M.; et al. HIV-1 Vpu affects the anterograde transport and the glycosylation pattern of NTB-A. Virology 2013, 440, 190–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashiguchi, T.; Ose, T.; Kubota, M.; Maita, N.; Kamishikiryo, J.; Maenaka, K.; Yanagi, Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 2011, 18, 135–141. [Google Scholar] [CrossRef]
- van der Merwe, P.A.; Barclay, A.N.; Mason, D.W.; Davies, E.A.; Morgan, B.P.; Tone, M.; Krishnam, A.K.; Ianelli, C.; Davis, S.J. Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry 1994, 33, 10149–10160. [Google Scholar] [CrossRef]
- Thorley-Lawson, D.A.; Schooley, R.T.; Bhan, A.K.; Nadler, L.M. Epstein-Barr virus superinduces a new human B cell differentiation antigen (B-LAST 1) expressed on transformed lymphoblasts. Cell 1982, 30, 415–425. [Google Scholar] [CrossRef]
- Ward, J.; Bonaparte, M.; Sacks, J.; Guterman, J.; Fogli, M.; Mavilio, D.; Barker, E. HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood 2007, 110, 1207–1214. [Google Scholar] [CrossRef]
- Chibueze-Nnorom, C.E.; White, Y.; Yoshimitsu, M.; Arima, N. Role of CD48 in regulation of T-cell mediated immunity in HTLV-1 infection. In Proceedings of the 15th International Congress of Immunology, Milan, Italy, 22–27 August 2013. [Google Scholar]
- Gonzalez-Cabrero, J.; Wise, C.J.; Latchman, Y.; Freeman, G.J.; Sharpe, A.H.; Reiser, H. CD48-deficient mice have a pronounced defect in CD4(+) T cell activation. Proc. Natl. Acad. Sci. USA 1999, 96, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Abadia-Molina, A.C.; Ji, H.; Faubion, W.A.; Julien, A.; Latchman, Y.; Yagita, H.; Sharpe, A.; Bhan, A.K.; Terhorst, C. CD48 controls T-cell and antigen-presenting cell functions in experimental colitis. Gastroenterology 2006, 130, 424–434. [Google Scholar] [CrossRef]
- Martinez-Martin, N.; Ramani, S.R.; Hackney, J.A.; Tom, I.; Wranik, B.J.; Chan, M.; Wu, J.; Paluch, M.T.; Takeda, K.; Hass, P.E.; et al. The extracellular interactome of the human adenovirus family reveals diverse strategies for immunomodulation. Nat. Commun. 2016, 7, 11473. [Google Scholar] [CrossRef]
- Graham, D.B.; Bell, M.P.; McCausland, M.M.; Huntoon, C.J.; Van Deursen, J.; Faubion, W.A.; Crotty, S.; Mckean, D.J. Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with SLAM- and SAP-deficient mice. J. Immunol. 2006, 176, 291–300. [Google Scholar] [CrossRef] [PubMed]
- McNerney, M.E.; Lee, K.M.; Kumar, V. 2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Mol. Immunol. 2005, 42, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, S.V.; Mathew, P.A. Of mice and men: Different functions of the murine and human 2B4 (CD244) receptor on NK cells. Immunol. Lett. 2006, 105, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Chlewicki, L.K.; Velikovsky, C.A.; Balakrishnan, V.; Mariuzza, R.A.; Kumar, V. Molecular basis of the dual functions of 2B4 (CD244). J. Immunol. 2008, 180, 8159–8167. [Google Scholar] [CrossRef] [Green Version]
- Peritt, D.; Sesok-Pizzini, D.A.; Schretzenmair, R.; Macgregor, R.R.; Valiante, N.M.; Tu, X.; Trinchieri, G.; Kamoun, M. C1.7 antigen expression on CD8+ T cells is activation dependent: Increased proportion of C1.7+CD8+ T cells in HIV-1-infected patients with progressing disease. J. Immunol. 1999, 162, 7563–7568. [Google Scholar]
- Enose-Akahata, Y.; Matsuura, E.; Oh, U.; Jacobson, S. High expression of CD244 and SAP regulated CD8 T cell responses of patients with HTLV-I associated neurologic disease. PLoS Pathog. 2009, 5, e1000682. [Google Scholar] [CrossRef]
- Pombo, C.; Wherry, E.J.; Gostick, E.; Price, D.A.; Betts, M.R. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J. Infect. Dis. 2015, 212, 1376–1386. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, S.R.; Ullum, H.; Pedersen, B.K.; Gerstoft, J.; Katzenstein, T.L. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy. Clin. Exp. Immunol. 2005, 141, 526–533. [Google Scholar] [CrossRef]
- Ahmad, F.; Shankar, E.M.; Yong, Y.K.; Tan, H.Y.; Ahrenstorf, G.; Jacobs, R.; Larsson, M.; Schmidt, R.E.; Kamarulzaman, A.; Ansari, A.W. Negative Checkpoint Regulatory Molecule 2B4 (CD244) Upregulation Is Associated with Invariant Natural Killer T Cell Alterations and Human Immunodeficiency Virus Disease Progression. Front. Immunol. 2017, 8, 338. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, N.J.; Aldhamen, Y.A.; Appledorn, D.M.; Seregin, S.S.; Kousa, Y.; Godbehere, S.; Amalfitano, A. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses. PLoS ONE 2011, 6, e24147. [Google Scholar] [CrossRef] [Green Version]
- Aldhamen, Y.A.; Seregin, S.S.; A Kousa, Y.; Rastall, D.P.W.; Appledorn, D.M.; Godbehere, S.; Schutte, B.C.; Amalfitano, A. Improved cytotoxic T-lymphocyte immune responses to a tumor antigen by vaccines co-expressing the SLAM-associated adaptor EAT-2. Cancer Gene. Ther. 2013, 20, 564–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sichien, D.; Scott, C.L.; Martens, L.; Vanderkerken, M.; Van Gassen, S.; Plantinga, M.; Joeris, T.; De Prijck, S.; Vanhoutte, L.; Vanheerswynghels, M.; et al. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity 2016, 45, 626–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannons, J.L.; Qi, H.; Lu, K.T.; Dutta, M.; Gomez-Rodriguez, J.; Cheng, J.; Wakeland, E.K.; Germain, R.N.; Schwartzberg, P.L.; Ghai, M. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 2010, 32, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangye, S.G.; Van De Weerdt, B.C.M.; Avery, D.T.; Hodgkin, P.D. CD84 is up-regulated on a major population of human memory B cells and recruits the SH2 domain containing proteins SAP and EAT-2. Eur. J. Immunol. 2002, 32, 1640–1649. [Google Scholar] [CrossRef]
- Fitzgerald-Bocarsly, P.; Jacobs, E.S. Plasmacytoid dendritic cells in HIV infection: Striking a delicate balance. J. Leukoc. Biol. 2010, 87, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Lewinsky, H.; Barak, A.F.; Huber, V.; Kramer, M.P.; Radomir, L.; Sever, L.; Orr, I.; Mirkin, V.; Dezorella, N.; Shapiro, M.; et al. CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia. J. Clin. Investig. 2018, 128, 5465–5478. [Google Scholar] [CrossRef] [Green Version]
- Denton, P.W.; Garcia, J.V. Novel humanized murine models for HIV research. Curr. HIV/AIDS Rep. 2009, 6, 13–19. [Google Scholar] [CrossRef]
- Policicchio, B.B.; Pandrea, I.; Apetrei, C. Animal Models for HIV Cure Research. Front. Immunol. 2016, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.C.; Sen, D.R.; Al Abosy, R.; Bi, K.; Virkud, Y.V.; LaFleur, M.W.; Yates, K.B.; Lako, A.; Felt, K.; Naik, G.S.; et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 2019, 20, 326–336. [Google Scholar] [CrossRef]
- Tassi, I.; Colonna, M. The cytotoxicity receptor CRACC (CS-1) recruits EAT-2 and activates the PI3K and phospholipase Cgamma signaling pathways in human NK cells. J. Immunol. 2005, 175, 7996–8002. [Google Scholar] [CrossRef]
- Cruz-Munoz, M.E.; Dong, Z.; Shi, X.; Zhang, S.; Veillette, A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat. Immunol. 2009, 10, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Cruz-Munoz, M.E.; Wu, N.; Robbins, M.; Veillette, A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol. Cell. Biol. 2015, 35, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhong, M.-C.; Guo, H.; Davidson, D.; Mishel, S.; Lu, Y.; Rhee, I.; Pérez-Quintero, L.-A.; Zhang, S.; Cruz-Munoz, M.-E.; et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 2017, 544, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rempel, H.; Sun, B.; Calosing, C.; Pillai, S.K.; Pulliam, L. Interferon-alpha drives monocyte gene expression in chronic unsuppressed HIV-1 infection. AIDS 2010, 24, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Paiardini, M.; Müller-Trutwin, M. HIV-associated chronic immune activation. Immunol. Rev. 2013, 254, 78–101. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cao, G.; Zheng, X.; Wang, J.; Wei, H.; Tian, Z.; Sun, R. CRACC-CRACC interaction between Kupffer and NK cells contributes to poly I:C/D-GalN induced hepatitis. PLoS ONE 2013, 8, e76681. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, R.; Wei, H.; Sun, R.; Tian, Z. NKG2D-retinoic acid early inducible-1 recognition between natural killer cells and Kupffer cells in a novel murine natural killer cell-dependent fulminant hepatitis. Hepatology 2009, 49, 940–949. [Google Scholar] [CrossRef]
- Kingsbury, G.A.; Feeney, L.A.; Nong, Y.; A Calandra, S.; Murphy, C.J.; Corcoran, J.M.; Wang, Y.; Das, M.R.P.; Busfield, S.J.; Fraser, C.C.; et al. Cloning, expression, and function of BLAME, a novel member of the CD2 family. J. Immunol. 2001, 166, 5675–5680. [Google Scholar] [CrossRef] [Green Version]
- Fraser, C.C.; Fraser, C.C.; Howie, D.; Morra, M.; Qiu, Y.; Murphy, C.; Gutierrez-Ramos, J.-C.; Coyle, A.; Kingsbury, G.A.; Shen, Q.; et al. Identification and characterization of SF2000 and SF2001, two new members of the immune receptor SLAM/CD2 family. Immunogenetics 2002, 53, 843–850. [Google Scholar]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef]
- Kumar, G.S.; Venugopal, A.K.; Kashyap, M.K.; Raju, R.; Marimuthu, A.; Palapetta, S.M.; Subbanayya, Y.; Goel, R.; Chawla, A.; Dikshit, J.B.; et al. Gene Expression Profiling of Tuberculous Meningitis Co-infected with HIV. J Proteomics Bioinform 2012, 5, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Liu, G.; Peng, W.; He, J.; Cai, C.; Xiong, W.; Chen, S.; Yang, M.; Dong, Z. Combined deficiency of SLAMF8 and SLAMF9 prevents endotoxin-induced liver inflammation by downregulating TLR4 expression on macrophages. Cell. Mol. Immunol. 2018, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Van Driel, B.J.; Liao, G.; O’Keeffe, M.S.; Halibozek, P.J.; Flipse, J.; Yigit, B.; Azcutia, V.; Luscinskas, F.W.; Wang, N.; et al. Migration of myeloid cells during inflammation is differentially regulated by the cell surface receptors Slamf1 and Slamf8. PLoS ONE 2015, 10, e0121968. [Google Scholar] [CrossRef] [PubMed]
- Burdo, T.H.; Lackner, A.; Williams, K.C. Williams, Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol. Rev. 2013, 254, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.W.; Veenstra, M.; Gaskill, P.J.; Morgello, S.; Calderon, T.M.; Berman, J.W. Monocytes mediate HIV neuropathogenesis: Mechanisms that contribute to HIV associated neurocognitive disorders. Curr. HIV Res. 2014, 12, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, M.; León-Rivera, R.; Li, M.; Gama, L.; Clements, J.E.; Berman, J.W. Mechanisms of CNS Viral Seeding by HIV(+) CD14(+) CD16(+) Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. mBio 2017, 8, e01280-17. [Google Scholar] [CrossRef] [Green Version]
- Fennelly, J.A.; Tiwari, B.; Davis, S.J.; Evans, E.J. CD2F-10: A new member of the CD2 subset of the immunoglobulin superfamily. Immunogenetics 2001, 53, 599–602. [Google Scholar] [CrossRef]
- Zhang, W.; Wan, T.; Li, N.; Yuan, Z.; He, L.; Zhu, X.; Yu, M.; Cao, X. Genetic approach to insight into the immunobiology of human dendritic cells and identification of CD84-H1, a novel CD84 homologue. Clin. Cancer Res. 2001, 7 (Suppl. 3), 822s–829s. [Google Scholar]
- Wilson, T.J.; Clare, S.; Lyons, P.; Dougan, G.; Smith, K.G.C. SLAMF9 promotes inflammation and resistance to Salmonella infection. J. Immunol. 2018, 200, S50. [Google Scholar]
- Saitoh, S.I.; Abe, F.; Kanno, A.; Tanimura, N.; Saitoh, Y.M.; Fukui, R.; Shibata, T.; Sato, K.; Ichinohe, T.; Hayashi, M.; et al. TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nat. Commun. 2017, 8, 1592. [Google Scholar] [CrossRef]
- Soper, A.; Kimura, I.; Nagaoka, S.; Konno, Y.; Yamamoto, K.; Koyanagi, Y.; Sato, K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front. Immunol. 2017, 8, 1823. [Google Scholar] [CrossRef] [Green Version]
- Aldhamen, Y.A.; Rastall, D.P.; Chen, W.; Seregin, S.S.; Pereira-Hicks, C.; Godbehere, S.; Kaminski, N.E.; Amalfitano, A. CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets. Vaccine 2016, 34, 3109–3118. [Google Scholar] [CrossRef] [PubMed]
- Aldhamen, Y.A.; Appledorn, D.M.; Seregin, S.S.; Liu, C.J.; Schuldt, N.J.; Godbehere, S.; Amalfitano, A. Expression of the SLAM family of receptors adapter EAT-2 as a novel strategy for enhancing beneficial immune responses to vaccine antigens. J. Immunol. 2011, 186, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Aldhamen, Y.A.; Seregin, S.S.; Aylsworth, C.F.; Godbehere, S.; Amalfitano, A. Manipulation of EAT-2 expression promotes induction of multiple beneficial regulatory and effector functions of the human innate immune system as a novel immunomodulatory strategy. Int. Immunol. 2014, 26, 291–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
SLAM Family Member | Known Direct Interactions with A Virus | Known Immuno-Modulatory Roles during Viral Infection | Expression Pattern |
---|---|---|---|
SLAMF1 (SLAM, CD150) | Measles [39] | Th2 polarization [17,40] | T cells, B cells, macrophages, DCs, platelets, HSCs |
SLAMF2 (CD48) | Down-regulated via CMV viral protein m154 [41] | Regulates DC survival and antigen-presentation during T cell interactions [31] | Nearly all hematopoietic cells |
SLAMF3 (Ly-9, CD229) | HCV E2 protein [42] | CD4+ T cells, CD8+ T cells, B cells, plasma cells, NK cells, NKT cells, ILCs, DCs, monocytes, macrophages, and HSCs | |
SLAMF4 (2B4, CD244) | Can be blocked via interactions with CMV SLAMF2 decoy receptor [43] Influenza viral HA protein [44] | T cell exhaustion [45,46,47,48,49,50] | NK cells, CD8+ T cells, NKT cells, γδ T cells, monocytes, basophils, eosinophils, DCs, mast cells |
SLAMF5 (CD84) | DC pro-inflammatory signaling [19] Germinal center formation [33] | B cells, T cells, monocytes, macrophages, DCs, platelets, thymocytes, NK cells, NKT cells, basophils, eosinophils. | |
SLAMF6 (NTB-A, Ly-108, CD352) | Degradation via interactions with HIV-1 vpu viral protein [51,52,53] | Cytotoxic interactions between virally infected cells and NK cells [44] | NK cells, NKT cells, T cells, B cells, macrophages, pDCs, DCs, thymocytes, eosinophils, neutrophils. |
SLAMF7 (CRACC, CD319, CS1) | Regulates monocyte responses to type I interferons [18] Regulates monocyte susceptibility to HIV-1 infection [18] | NK cells, CD4+ T cells, CD8+ T cells, NKT cells, classical monocytes, inflammatory monocytes, macrophages, DCs, B cells, plasma cells | |
SLAMF8 (BLAME, CD353) | Regulation of macrophage pro- and anti-inflammatory functions [20] | B cells, T cells, monocytes, macrophages, DCs, platelets, thymocytes, NK cells, NKT cells, basophils, eosinophils. | |
SLAMF9 (SF2001, CD84H1) | Regulation of macrophage and pDC responses [21,29] | Monocytes, pDCs, DCs, T cells, B cells, macrophages. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connell, P.; Amalfitano, A.; Aldhamen, Y.A. SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond. Vaccines 2019, 7, 184. https://doi.org/10.3390/vaccines7040184
O’Connell P, Amalfitano A, Aldhamen YA. SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond. Vaccines. 2019; 7(4):184. https://doi.org/10.3390/vaccines7040184
Chicago/Turabian StyleO’Connell, Patrick, Andrea Amalfitano, and Yasser A. Aldhamen. 2019. "SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond" Vaccines 7, no. 4: 184. https://doi.org/10.3390/vaccines7040184