Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice, Parasites and Preparation of Soluble Ag
2.2. Vaccine Preparation and Immunization Protocol
2.3. Generation of Bone Marrow-Derived Murine Dendritic Cells (BMDCs) for Use in Pre/post-Infection Assays
2.4. Pre-Infection Evaluation of the Immune Response Induced by HisAK70 Immunization
2.5. Infection, Lesion Follow-up and Parasite Burden in the In Vivo Model
2.6. Cellular Immune Response in the Spleen: Cytokine Production after Challenge
2.7. Arginase Activity and Nitric Oxide Production Assay
2.8. Humoral Response
2.9. Statistical Analysis
3. Results
3.1. Evaluation or Pre-Infection Biomarkers to Assess the Immune Response Induced by the HisAK70 Vaccine
3.2. HisAK70 Immunization Confers Protection in Mice Following Challenge with L. amazonensis
3.3. Immunization with HisAK70 Promotes a Predominance of the Cellular Immune Response in Mice after Challenge
3.4. The Effect of HisAK70 DNA Immunization on Host Enzymatic Activity is Required for Efficient Infection Control
3.5. Specific Humoral Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votypka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory (GHO) Data. Available online: https://www.who.int/gho/neglected_diseases/leishmaniasis/en/ (accessed on 23 October 2019).
- Fenwick, A. The global burden of neglected tropical diseases. Public Health 2012, 126, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Bern, C.; Maguire, J.H.; Alvar, J. Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl. Trop. Dis. 2008, 2, e313. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Bernal, G.; Jimenez, M.; Molina, R.; Ordonez-Gutierrez, L.; Martinez-Rodrigo, A.; Mas, A.; Cutuli, M.T.; Carrion, J. Characterisation of the ex vivo virulence of Leishmania infantum isolates from Phlebotomus perniciosus from an outbreak of human leishmaniosis in Madrid, Spain. Parasites Vectors 2014, 7, 499. [Google Scholar] [CrossRef] [PubMed]
- Maroli, M.; Feliciangeli, M.D.; Bichaud, L.; Charrel, R.N.; Gradoni, L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013, 27, 123–147. [Google Scholar] [CrossRef]
- Antoniou, M.; Gramiccia, M.; Molina, R.; Dvorak, V.; Volf, P. The role of indigenous phlebotomine sandflies and mammals in the spreading of leishmaniasis agents in the Mediterranean region. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2013, 18, 20540. [Google Scholar] [CrossRef]
- World Health Organization. Leishmaniasis in high-burden countries: An epidemiological update based on data reported in 2014. Wkly. Epidemiol. Rec. 2016, 22, 285–296. [Google Scholar]
- Alvar, J.; Velez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Almeida, R.P.; BarralNetto, M.; DeJesus, A.M.R.; DeFreitas, L.A.R.; Carvalho, E.M.; Barral, A. Biological behavior of Leishmania amazonensis isolated from humans with cutaneous, mucosal, or visceral leishmaniasis in BALB/c mice. Am. J. Trop. Med. Hyg. 1996, 54, 178–184. [Google Scholar] [CrossRef]
- Azeredo-Coutinho, R.B.; Conceicao-Silva, F.; Schubach, A.; Cupolillo, E.; Quintella, L.P.; Madeira, M.F.; Pacheco, R.S.; Valete-Rosalino, C.M.; Mendonca, S.C. First report of diffuse cutaneous leishmaniasis and Leishmania amazonensis infection in Rio de Janeiro State, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 735–737. [Google Scholar] [CrossRef]
- Valdivia, H.O.; Almeida, L.V.; Roatt, B.M.; Reis-Cunha, J.L.; Pereira, A.A.; Gontijo, C.; Fujiwara, R.T.; Reis, A.B.; Sanders, M.J.; Cotton, J.A.; et al. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci. Rep. 2017, 7, 40804. [Google Scholar] [CrossRef] [PubMed]
- Osorio y Fortea, J.; Prina, E.; de La Llave, E.; Lecoeur, H.; Lang, T.; Milon, G. Unveiling pathways used by Leishmania amazonensis amastigotes to subvert macrophage function. Immunol. Rev. 2007, 219, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Engwerda, C. Vaccines to prevent leishmaniasis. Clin. Transl. Immunol. 2014, 3, e13. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.S.V.; Mendonca, D.V.C.; Lage, D.P.; Antinarelli, L.M.R.; Soyer, T.G.; Senna, A.J.S.; Matos, G.F.; Dias, D.S.; Ribeiro, P.A.F.; Batista, J.P.T.; et al. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species. Acta Trop. 2018, 191, 29–37. [Google Scholar] [CrossRef]
- Mendonca, D.V.C.; Tavares, G.S.V.; Lage, D.P.; Soyer, T.G.; Carvalho, L.M.; Dias, D.S.; Ribeiro, P.A.F.; Ottoni, F.M.; Antinarelli, L.M.R.; Vale, D.L.; et al. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomed. Pharmacother. 2019, 109, 779–787. [Google Scholar] [CrossRef]
- Mayrink, W.; Botelho, A.C.; Magalhaes, P.A.; Batista, S.M.; Lima Ade, O.; Genaro, O.; Costa, C.A.; Melo, M.N.; Michalick, M.S.; Williams, P.; et al. Immunotherapy, immunochemotherapy and chemotherapy for American cutaneous leishmaniasis treatment. Rev. Soc. Bras. Med. Trop. 2006, 39, 14–21. [Google Scholar] [CrossRef]
- Tavares, G.S.V.; Mendonca, D.V.C.; Miyazaki, C.K.; Lage, D.P.; Soyer, T.G.; Carvalho, L.M.; Ottoni, F.M.; Dias, D.S.; Ribeiro, P.A.F.; Antinarelli, L.M.R.; et al. A Pluronic® F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection. Parasitol. Int. 2019, 68, 63–72. [Google Scholar] [CrossRef]
- Iborra, S.; Solana, J.C.; Requena, J.M.; Soto, M. Vaccine candidates against leishmania under current research. Expert Rev. Vaccines 2018, 17, 323–334. [Google Scholar] [CrossRef]
- Porrozzi, R.; Teva, A.; Amaral, V.F.; da Costa, M.V.S.; Grimaldi, G., Jr. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta). Am. J. Trop. Med. Hyg. 2004, 71, 297–305. [Google Scholar] [CrossRef]
- Dominguez-Bernal, G.; Horcajo, P.; Orden, J.A.; Ruiz-Santa-Quiteria, J.A.; De La Fuente, R.; Ordonez-Gutierrez, L.; Martinez-Rodrigo, A.; Mas, A.; Carrion, J. HisAK70: Progress towards a vaccine against different forms of leishmaniosis. Parasites Vectors 2015, 8, 629. [Google Scholar] [CrossRef]
- Nico, D.; Gomes, D.C.; Alves-Silva, M.V.; Freitas, E.O.; Morrot, A.; Bahia, D.; Palatnik, M.; Rodrigues, M.M.; Palatnik-de-Sousa, C.B. Cross-Protective Immunity to Leishmania amazonensis is Mediated by CD4+ and CD8+ Epitopes of Leishmania donovani Nucleoside Hydrolase Terminal Domains. Front. Immunol. 2014, 5, 189. [Google Scholar] [CrossRef] [PubMed]
- Lage, D.P.; Martins, V.T.; Duarte, M.C.; Costa, L.E.; Tavares, G.S.V.; Ramos, F.F.; Chavez-Fumagalli, M.A.; Menezes-Souza, D.; Roatt, B.M.; Tavares, C.A.P.; et al. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Trop. 2016, 158, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Sun, J.; Soong, L. Impaired Expression of Inflammatory Cytokines and Chemokines at Early Stages of Infection with Leishmania amazonensis. Infect. Immun. 2003, 71, 4278–4288. [Google Scholar] [CrossRef] [PubMed]
- Wanderley, J.L.M.; Deolindo, P.; Carlsen, E.; Portugal, A.B.; DaMatta, R.A.; Barcinski, M.A.; Soong, L. CD4(+) T Cell-Dependent Macrophage Activation Modulates Sustained PS Exposure on Intracellular Amastigotes of Leishmania amazonensis. Front. Cell. Infect. Microbiol. 2019, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.A.S.; Alves, C.R. Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Vet. Parasitol. 2008, 158, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.A.F.; Tavares, C.A.P.; Carvalho, F.A.A.; Chaves, K.F.; Teixeira, K.N.; Rodrigues, R.C.; Charest, H.; Matlashewski, G.; Gazzinelli, R.T.; Fernandes, A.P. Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infect. Immun. 2003, 71, 3988–3994. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.; Corvo, L.; Duarte, M.C.; Chavez-Fumagalli, M.A.; Valadares, D.G.; Santos, D.M.; de Oliveira, C.I.; Escutia, M.R.; Alonso, C.; Bonay, P.; et al. Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites Vectors 2014, 7, 3. [Google Scholar] [CrossRef]
- Campos, B.L.S.; Silva, T.N.; Ribeiro, S.P.; Carvalho, K.I.L.; Kallas, E.G.; Laurenti, M.D.; Passero, L.F.D. Analysis of iron superoxide dismutase-encoding DNA vaccine on the evolution of the Leishmania amazonensis experimental infection. Parasite Immunol. 2015, 37, 407–416. [Google Scholar] [CrossRef]
- Dominguez-Bernal, G.; Horcajo, P.; Orden, J.A.; De La Fuente, R.; Herrero-Gil, A.; Ordonez-Gutierrez, L.; Carrion, J. Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: The role of the pathoantigenic HISA70 DNA vaccine. Vet. Res. 2012, 43, 59. [Google Scholar] [CrossRef]
- Dominguez-Bernal, G.; Martinez-Rodrigo, A.; Mas, A.; Blanco, M.M.; Orden, J.A.; De La Fuente, R.; Carrion, J. Alternative strategy for visceral leishmaniosis control: HisAK70-Salmonella Choleraesuis-pulsed dendritic cells. Comp. Immunol. Microbiol. Infect. Dis. 2017, 54, 13–19. [Google Scholar] [CrossRef]
- Calabrese, K.S.; da Costa, S.C. Enhancement of Leishmania amazonensis infection in BCG non-responder mice by BCG-antigen specific vaccine. Mem. Inst. Oswaldo Cruz 1992, 87 (Suppl. 1), 49–56. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.; Lage, D.P.; Martins, V.T.; Costa, L.E.; Carvalho, A.; Ludolf, F.; Santos, T.T.O.; Vale, D.L.; Roatt, B.M.; Menezes-Souza, D.; et al. A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology 2017, 222, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Pearce, E.; Natovitz, P.; Sher, A. Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J. Immunol. 1987, 139, 221–227. [Google Scholar] [PubMed]
- Lutz, M.B.; Kukutsch, N.; Ogilvie, A.L.; Rossner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92. [Google Scholar] [CrossRef]
- Buffet, P.A.; Sulahian, A.; Garin, Y.J.F.; Nassar, N.; Derouin, F. Culture Microtitration—A Sensitive Method for Quantifying Leishmania-Infantum in Tissues of Infected Mice. Antimicrob. Agents Chemother. 1995, 39, 2167–2168. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.C.; Lage, D.P.; Martins, V.T.; Chávez-Fumagalli, M.A.; Roatt, B.M.; Menezes-Souza, D.; Goulart, L.R.; Soto, M.; Tavares, C.A.P.; Coelho, E.A.F. Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis. Rev. Soc. Bras. Med. Trop. 2016, 49, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Ding, A.H.; Nathan, C.F.; Stuehr, D.J. Release of Reactive Nitrogen Intermediates and Reactive Oxygen Intermediates from Mouse Peritoneal-Macrophages—Comparison of Activating Cytokines and Evidence for Independent Production. J. Immunol. 1988, 141, 2407–2412. [Google Scholar]
- Garrido, V.V.; Dulgerian, L.R.; Stempin, C.C.; Cerban, F.M. The Increase in Mannose Receptor Recycling Favors Arginase Induction and Trypanosoma Cruzi Survival in Macrophages. Int. J. Biol. Sci. 2011, 7, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Rath, M.; Muller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014, 5, 532. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.C.; Mattila, J.T. “Of mice and men”: Arginine metabolism in macrophages. Front. Immunol. 2014, 5, 479. [Google Scholar] [CrossRef] [Green Version]
- Hasson, S.S.A.A.; Al-Busaidi, J.K.Z.; Sallam, T.A. The past, current and future trends in DNA vaccine immunisations. Asian Pac. J. Trop. Biomed. 2015, 5, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Samant, M. DNA vaccine against visceral leishmaniasis: A promising approach for prevention and control. Parasite Immunol. 2016, 38, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Duthie, M.S.; Reed, S.G. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. Clin. Vaccine Immunol. 2017, 24, e00108-17. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodrigo, A.; Mas, A.; Fernández-Cotrina, J.; Belinchón-Lorenzo, S.; Orden, J.A.; Arias, P.; de la Fuente, R.; Carrión, J.; Domínguez-Bernal, G. Strength and medium-term impact of HisAK70 immunization in dogs: Vaccine safety and biomarkers of effectiveness for ex vivo Leishmania infantum infection. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 137–143. [Google Scholar] [CrossRef]
- Nascimento, K.F.; de Santana, F.R.; da Costa, C.R.V.; Kaplum, V.; Volpato, H.; Nakamura, C.V.; Bonamin, L.V.; Buchi, D.D. M1 homeopathic complex trigger effective responses against Leishmania (L) amazonensis in vivo and in vitro. Cytokine 2017, 99, 80–90. [Google Scholar] [CrossRef]
- Sacks, D.L.; Melby, P.C. Animal models for the analysis of immune responses to leishmaniasis. Curr. Protoc. Immunol. 2001, 28, 19.2.1–19.2.20. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.S.; Martins, V.T.; Ribeiro, P.A.F.; Ramos, F.F.; Lage, D.P.; Tavares, G.S.V.; Mendonca, D.V.C.; Chavez-Fumagalli, M.A.; Oliveira, J.S.; Silva, E.S.; et al. Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis. Parasitology 2018, 145, 740–751. [Google Scholar] [CrossRef]
- Dias, D.S.; Ribeiro, P.A.F.; Martins, V.T.; Lage, D.P.; Ramos, F.F.; Dias, A.L.T.; Rodrigues, M.R.; Portela, A.S.B.; Costa, L.E.; Caligiorne, R.B.; et al. Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cell. Immunol. 2018, 323, 59–69. [Google Scholar] [CrossRef]
- Ribeiro, P.A.F.; Dias, D.S.; Novais, M.V.M.; Lage, D.P.; Tavares, G.S.V.; Mendonca, D.V.C.; Oliveira, J.S.; Chavez-Fumagalli, M.A.; Roatt, B.M.; Duarte, M.C.; et al. A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine 2018, 111, 131–139. [Google Scholar] [CrossRef]
- von Stebut, E.; Tenzer, S. Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int. J. Med. Microbiol. 2017, 308, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Hosein, S.; Blake, D.P.; Solano-Gallego, L. Insights on adaptive and innate immunity in canine leishmaniosis. Parasitology 2017, 144, 95–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iborra, S.; Martinez-Lopez, M.; Cueto, F.J.; Conde-Garrosa, R.; Del Fresno, C.; Izquierdo, H.M.; Abram, C.L.; Mori, D.; Campos-Martin, Y.; Reguera, R.M.; et al. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection. Immunity 2016, 45, 788–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas-Silva, R.; Brelaz-de-Castro, M.C.; Rezende, A.M.; Pereira, V.R. Targeting Dendritic Cells as a Good Alternative to Combat Leishmania spp. Front. Immunol. 2014, 5, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glennie, N.D.; Scott, P. Memory T cells in cutaneous leishmaniasis. Cell. Immunol. 2016, 309, 50–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glennie, N.D.; Volk, S.W.; Scott, P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog. 2017, 13, e1006349. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Novais, F.O. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Nat. Rev. Immunol. 2016, 16, 581–592. [Google Scholar] [CrossRef]
- Seifert, K.; Juhls, C.; Salguero, F.J.; Croft, S.L. Sequential Chemoimmunotherapy of Experimental Visceral Leishmaniasis Using a Single Low Dose of Liposomal Amphotericin B and a Novel DNA Vaccine Candidate. Antimicrob. Agents Chemother. 2015, 59, 5819–5823. [Google Scholar] [CrossRef] [Green Version]
- Viana, K.F.; Lacerda, G.; Teixeira, N.S.; Rodrigues Cangussu, A.S.; Sousa Aguiar, R.W.; Giunchetti, R.C. Therapeutic vaccine of killed Leishmania amazonensis plus saponin reduced parasite burden in dogs naturally infected with Leishmania infantum. Vet. Parasitol. 2018, 254, 98–104. [Google Scholar] [CrossRef]
- Sacks, D.L. Vaccines against tropical parasitic diseases: A persisting answer to a persisting problem. Nat. Immunol. 2014, 15, 403–405. [Google Scholar] [CrossRef]
- Engwerda, C.R.; Matlashewski, G. Development of Leishmania vaccines in the era of visceral leishmaniasis elimination. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 423–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurunathan, S.; Prussin, C.; Sacks, D.L.; Seder, R.A. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat. Med. 1998, 4, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, E.; Kochan, G.; Gherardi, M.M.; Esteban, M. MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes Infect. 2006, 8, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Lage, D.P.; Martins, V.T.; Duarte, M.C.; Garde, E.; Chavez-Fumagalli, M.A.; Menezes-Souza, D.; Roatt, B.M.; Tavares, C.A.P.; Soto, M.; Coelho, E.A.F. Prophylactic properties of a Leishmania-specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunol. 2015, 37, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.T.; Chavez-Fumagalli, M.A.; Lage, D.P.; Duarte, M.C.; Garde, E.; Costa, L.E.; da Silva, V.G.; Oliveira, J.S.; de Magalhaes-Soares, D.F.; Teixeira, S.M.R.; et al. Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis. PLoS ONE 2015, 10, e0137683. [Google Scholar] [CrossRef]
- Ramirez, L.; Santos, D.M.; Souza, A.P.; Coelho, E.A.F.; Barral, A.; Alonso, C.; Escutia, M.R.; Bonay, P.; de Oliveira, C.I.; Soto, M. Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis. Vaccine 2013, 31, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.E.; Chavez-Fumagalli, M.A.; Martins, V.T.; Duarte, M.C.; Lage, D.P.; Lima, M.I.S.; Pereira, N.C.D.; Soto, M.; Tavares, C.A.P.; Goulart, L.R.; et al. Phage-fused epitopes from Leishmania infantum used as immunogenic vaccines confer partial protection against Leishmania amazonensis infection. Parasitology 2015, 142, 1335–1347. [Google Scholar] [CrossRef] [Green Version]
- Margaroni, M.; Agallou, M.; Athanasiou, E.; Kammona, O.; Kiparissides, C.; Gaitanaki, C.; Karagouni, E. Vaccination with poly (D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFalpha-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. Int. J. Nanomed. 2017, 12, 6169–6184. [Google Scholar] [CrossRef] [Green Version]
Groups | Ratio IFN-γ/IL-10 | Ratio IFN-γ/IL-4 | Ratio GMCSF/IL-10 | Ratio GMCSF/IL-4 |
---|---|---|---|---|
Control | 0.75 | 3.50 | 4.02 | 14.28 |
Vector | 0.47 | 1.30 | 3.73 | 20.87 |
HisAK70 | 4.35 * | 126.84 * | 15.15 | 428.74 ** |
Groups | HisAK 70 | Vector | Control |
---|---|---|---|
24 h after ex vivo infection | 10.84 * | 31.34 | 27.09 |
72 h after ex vivo infection | 7.95 * | 24.14 | 22.33 |
Groups | Ratio IFN-γ/IL-10 | Ratio IFN-γ/IL-4 | Ratio GMCSF/IL-10 | Ratio GMCSF/IL-4 |
---|---|---|---|---|
Control | 1.55 | 0.13 | 1.47 | 1.02 |
Vector | 3.12 | 0.29 | 2.04 | 1.49 |
HisAK70 | 498.06 ** | 59.78 ** | 66.44 * | 80.05 ** |
Groups | mU Arginase Activity | µM Nitrites |
---|---|---|
Control | 25.32 ± 6.55 | 0.45 ± 0.13 |
Vector | 19.17 ± 5.51 | 0.78 ± 0.78 * |
HisAK70 | 2.61 ± 1.09 ** | 6.48 ± 0.46 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Rodrigo, A.; S. Dias, D.; Ribeiro, P.A.F.; Roatt, B.M.; Mas, A.; Carrión, J.; Coelho, E.A.F.; Domínguez-Bernal, G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines 2019, 7, 183. https://doi.org/10.3390/vaccines7040183
Martínez-Rodrigo A, S. Dias D, Ribeiro PAF, Roatt BM, Mas A, Carrión J, Coelho EAF, Domínguez-Bernal G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines. 2019; 7(4):183. https://doi.org/10.3390/vaccines7040183
Chicago/Turabian StyleMartínez-Rodrigo, Abel, Daniel S. Dias, Patrícia A. F. Ribeiro, Bruno M. Roatt, Alicia Mas, Javier Carrión, Eduardo A. F. Coelho, and Gustavo Domínguez-Bernal. 2019. "Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice" Vaccines 7, no. 4: 183. https://doi.org/10.3390/vaccines7040183