First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Production
2.2. Study Design and Ethical Considerations
2.3. Recruitment and Enrolment
2.4. Follow-Up and Safety Evaluation (Clinical Procedures)
2.5. Immunogenicity Assays
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Vaccine Safety
3.3. Vaccine Immunogenicity
3.3.1. Antigen-Specific IFN-γ Response
3.3.2. Cytokine Profiling of T-Cell Response
3.3.3. Antigen-Specific IgG Response
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Strategy and Targets for Tuberculosis Prevention, Care and Control after 2015: Report by the Secretariat; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Fletcher, H.A.; Schrager, L. TB Vaccine Development and the End TB Strategy: Importance and Current Status. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 212–218. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2018—Geneva; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- WHO. WHO Preferred Product Characteristics for New Tuberculosis Vaccines; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Abu-Raddad, L.J.; Sabatelli, L.; Achterberg, J.T.; Sugimoto, J.D.; Longini, I.M.; Dye, C.; Halloran, M.E. Epidemiological Benefits of More-Effective Tuberculosis Vaccines, Drugs, and Diagnostics. Proc. Natl. Acad. Sci. USA 2009, 106, 13980–13985. [Google Scholar] [CrossRef] [PubMed]
- Karp, C.L.; Wilson, C.B.; Stuart, L.M. Tuberculosis Vaccines: Barriers and Prospects on the Quest for a Transformative Tool. Immunol. Rev. 2015, 264, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana, C.; Cardona, P. How Far Are We Away From an Improved Vaccine For Tuberculosis? Current Efforts and Future Prospects. Arch. Bronconeumol. 2019, 55, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.; Triccas, J.; Petrovsky, N. Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, A.P.; Gushchin, V.A.; Potapov, V.D.; Demidenko, A.V.; Lunin, V.G.; Gintsburg, A.L. Multi-Subunit BCG Booster Vaccine GamTBvac: Assessment of Immunogenicity and Protective Efficacy in Murine and Guinea Pig TB Models. PLoS ONE 2017, 12, e0176784. [Google Scholar] [CrossRef]
- Cordeiro, A.S.; Alonso, M.J.; de la Fuente, M. Nanoengineering of Vaccines Using Natural Polysaccharides. Biotechnol. Adv. 2015, 33, 1279–1293. [Google Scholar] [CrossRef]
- Agger, E.M. Novel Adjuvant Formulations for Delivery of Anti-Tuberculosis Vaccine Candidates. Adv. Drug Deliv. Rev. 2016, 102, 73–82. [Google Scholar] [CrossRef]
- Evaluation of the Safety and Immunogenicity of the Recombinant Subunit Vaccine "GamTBvac" Against the Tuberculosis. (GamTBvac). Available online: https://clinicaltrials.gov/ct2/show/NCT03255278 (accessed on 31 October 2019).
- Mazunina, E.P.; Kleymenov, D.A.; Manuilov, V.A.; Gushchin, V.A.; Tkachuk, A.P. A Protocol of Development of a Screening Assay for Evaluating Immunological Memory to Vaccine-Preventable Infections: Simultaneous Detection of Antibodies to Measles, Mumps, Rubella and Hepatitis B. Bull. Russ. State Med. Univ. 2017, 5, 45–57. [Google Scholar] [CrossRef]
- The xMAP® Cookbook, 4th Edition. Available online: http://info.luminexcorp.com/en-us/research/download-the-xmap-cookbook (accessed on 31 October 2019).
- Appia, A.; WHO. Global Manual on Surveilance of Adverse Events Following Immunization; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Moguche, A.O.; Musvosvi, M.; Penn-Nicholson, A.; Plumlee, C.R.; Mearns, H.; Geldenhuys, H.; Smit, E.; Abrahams, D.; Rozot, V.; Dintwe, O.; et al. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host Microbe 2017, 21, 695–706. [Google Scholar] [CrossRef]
- Billeskov, R.; Lindenstrøm, T.; Woodworth, J.; Vilaplana, C.; Cardona, P.J.; Cassidy, J.P.; Mortensen, R.; Agger, E.M.; Andersen, P. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis. Front. Immunol. 2018, 8, 1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindong, Z.; Dockerell, H.M.; Ottenhoff, T.H.; Evans, T.G.; Zhang, Y. Tuberculosis Vaccines: Opportunities and Challenges. Respirology 2018, 23, 359–368. [Google Scholar]
- Walzl, G.; Ronacher, K.; Hanekom, W.; Scriba, T.J.; Zumla, A. Immunological Biomarkers of Tuberculosis. Nat. Rev. Immunol. 2011, 11, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Boisson-Dupuis, S. Seminars in Immunology Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 2014, 26, 454–470. [Google Scholar] [CrossRef] [PubMed]
- Ottenhoff, T.H.M.; Dass, R.H.; Yang, N.; Zhang, M.M.; Wong, H.E.E.; Sahiratmadja, E.; Khor, C.C.; Alisjahbana, B.; Van Crevel, R.; Marzuki, S.; et al. Genome-Wide Expression Profiling Identifies Type 1 Interferon Response Pathways in Active Tuberculosis. PLoS ONE 2012, 7, e45839. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P. Vaccine Strategies against Latent Tuberculosis Infection. Trends Microbiol. 2007, 15, 7–13. [Google Scholar] [CrossRef]
- Caccamo, N.; Guggino, G.; Joosten, S.A.; Gelsomino, G.; Di Carlo, P.; Titone, L.; Galati, D.; Bocchino, M.; Matarese, A.; Salerno, A.; et al. Multifunctional CD4+ T Cells Correlate with Active Mycobacterium Tuberculosis Infection. Eur. J. Immunol. 2010, 40, 2211–2220. [Google Scholar] [CrossRef]
- Aagaard, C.S.; Hoang, T.T.K.T.; Vingsbo-Lundberg, C.; Dietrich, J.; Andersen, P. Quality and Vaccine Efficacy of CD4 + T Cell Responses Directed to Dominant and Subdominant Epitopes in ESAT-6 from Mycobacterium Tuberculosis. J. Immunol. 2009, 183, 2659–2668. [Google Scholar] [CrossRef]
- Hoft, D.F.; Kemp, E.B.; Marinaro, M.; Cruz, O.; Kiyono, H.; McGhee, J.R.; Belisle, J.T.; Milligan, T.W.; Miller, J.P.; Belshe, R.B. A Double-Blind, Placebo-Controlled Study of Mycobacterium-Specific Human Immune Responses Induced by Intradermal Bacille Calmette-Guerin Vaccination. J. Lab. Clin. Med. 1999, 134, 244–252. [Google Scholar] [CrossRef]
- Turneer, M.; Van Vooren, J.; Nyabenda, J.; Legros, F.; Lecomte, A.; Thiriaux, J.; Serruys, E.; Yernault, J. The Humoral Immune Response after BCG Vaccination in Humans: Consequences for the Serodiagnosis of Tuberculosis. Eur. Respir. J. 1988, 1, 589–593. [Google Scholar]
- Perley, C.C.; Frahm, M.; Click, E.M.; Dobos, K.M.; Ferrari, G.; Stout, J.E.; Frothingham, R. The Human Antibody Response to the Surface of Mycobacterium Tuberculosis. PLoS ONE 2014, 9, e98938. [Google Scholar] [CrossRef] [PubMed]
- Van Dissel, J.T.; Arend, S.M.; Prins, C.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Klein, M.R.; Rosenkrands, I.; Ottenhoff, T.H.M.; et al. Ag85B-ESAT-6 Adjuvanted with IC31® Promotes Strong and Long-Lived Mycobacterium Tuberculosis Specific T Cell Responses in Naïve Human Volunteers. Vaccine 2010, 28, 3571–3581. [Google Scholar] [CrossRef]
- Van Dissel, J.T.; Soonawala, D.; Joosten, S.A.; Prins, C.; Arend, S.M.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Hoff, S.S.; et al. Ag85B-ESAT-6 Adjuvanted with IC31® Promotes Strong and Long-Lived Mycobacterium Tuberculosis Specific T Cell Responses in Volunteers with Previous BCG Vaccination or Tuberculosis Infection. Vaccine 2011, 29, 2100–2109. [Google Scholar] [CrossRef] [PubMed]
- Luabeya, A.K.K.; Kagina, B.M.N.; Tameris, M.D.; Geldenhuys, H.; Hoff, S.T.; Shi, Z.; Kromann, I.; Hatherill, M.; Mahomed, H.; Hanekom, W.A.; et al. First-in-Human Trial of the Post-Exposure Tuberculosis Vaccine H56: IC31 in Mycobacterium Tuberculosis Infected and Non-Infected Healthy Adults. Vaccine 2015, 33, 4130–4140. [Google Scholar] [CrossRef] [PubMed]
- Hussein, J.; Zewdie, M.; Yamuah, L.; Bedru, A.; Abebe, M.; Dagnew, A.F.; Chanyalew, M.; Yohannes, A.G.; Ahmed, J.; Engers, H.; et al. A Phase I, Open-Label Trial on the Safety and Immunogenicity of the Adjuvanted Tuberculosis Subunit Vaccine H1/IC31® in People Living in a TB-Endemic Area. Trials 2018, 19, 24. [Google Scholar] [CrossRef]
- De Gijsel, D.; von Reyn, C.F. A Breath of Fresh Air: BCG Prevents Adult Pulmonary Tuberculosis. Int. J. Infect. Dis. 2019, 80, S6–S8. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, X.X.; Wang, B.; Fu, L.; Liu, G.; Lu, Y.; Cao, M.; Huang, H.; Javid, B. Latently and Uninfected Healthcare Workers Exposed to TB Make Protective Antibodies against Mycobacterium Tuberculosis. Proc. Natl. Acad. Sci. USA. 2017. [Google Scholar] [CrossRef]
- Andrews, J.R.; Noubary, F.; Walensky, R.P.; Cerda, R.; Losina, E.; Horsburgh, C.R. Risk of Progression to Active Tuberculosis Following Reinfection with Mycobacterium Tuberculosis. Clin. Infect. Dis. 2012, 54, 784–791. [Google Scholar] [CrossRef]
- Blaser, N.; Zahnd, C.; Hermans, S.; Salazar-Vizcaya, L.; Estill, J.; Morrow, C.; Egger, M.; Keiser, O.; Wood, R. Tuberculosis in Cape Town: An Age-Structured Transmission Model. Epidemics 2016, 14, 54–61. [Google Scholar] [CrossRef]
- Phase II Clinical Trial of Safety and Immunogenicity of Recombinant Subunit Tuberculosis Vaccine GamTBvac. Available online: https://clinicaltrials.gov/ct2/show/NCT03878004?term=GamTBvac&rank=2 (accessed on 31 October 2019).
Title | Antigens | CpG2216 | DEAE-Dextran 500 | Dextran 500 | Vaccination |
---|---|---|---|---|---|
Group 1 (PBS Placebo) | no | no | no | no | Single |
Group 2 | 6.25 μg DBD-ESAT6-CFP10 6.25 μg DBD-Ag85a | 37.5 μg | 125 μg | 2.5 mg | Single |
Group 3 | 6.25 μg DBD-ESAT6-CFP10 6.25 μg DBD-Ag85a | 37.5 μg | 125 μg | 2.5 mg | Double |
Group 4 | 12.5 μg DBD-ESAT6-CFP10 12.5 μg DBD-Ag85a | 75 μg | 250 μg | 5 mg | Double |
Group 5 | 25.0 μg DBD-ESAT6-CFP10 25.0 μg DBD-Ag85a | 150 μg | 500 μg | 10 mg | Double |
Title | Group 1 (n = 12) | Group 2 (n = 12) | Group 3 (n = 12) | Group 4 (n = 12) | Group 5 (n = 12) |
---|---|---|---|---|---|
Age | |||||
Median age, years (min–max) | 28.5 (23.0–43.0) | 25.5 (20.0–47.0) | 39.5 (24.0–49.0) | 22.0 (20.0–47.0) | 22.5 (19.0–45.0) |
Sex | |||||
Male, n (%) | 3 (25.00%) | 8 (66.67%) | 1 (8.33%) | 2 (16.67%) | 3 (25.00%) |
Ethnicity | |||||
European | 12 (100.00%) | 12 (100.00%) | 12 (100.00%) | 12 (100.00%) | 12 (100.00%) |
Median body mass index, kg/m2 (min–max) | 22.80 (18.90–27.60) | 21.00 (19.20–27.00) | 25.55 (19.50–28.70) | 21.50 (20.30–28.40) | 23.08 (19.60–28.70) |
Title | Group 1 (n = 12) | Group 2 n = 12) | Group 3 (n = 12) | Group 4 (n = 12) | Group 5 (n = 12) |
---|---|---|---|---|---|
Participants with at least one AE, n (%) | 0 (0.00%) | 6 (50.00%) | 10 (83.33%) | 12 (100.00%) | 12 (100.00%) |
Local-injection-site AEs (number with AEs after first and second immunization (% of participants with AE) | |||||
Erythema | 0 (0%) | 6 (50%) 1 | 8/0 (66.67/0%) 1,2 | 12/0 (100/0%) 1 | 10/2 (83/17%) 1 |
Systemic AEs (number with AEs/total number of participants in group, %) | |||||
Gastrointestinal disorders | |||||
Dyspepsia | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 0 (0.0%) |
General disorders | |||||
Body-temperature increase | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) |
Laboratory abnormalities | |||||
Red-blood-cell sedimentation-rate increase | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 1 (8.3%) |
C-reactive protein increase | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 3 (25.0%) | 1 (8.3%) |
Alanine aminotransferase increase | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 0 (0.0%) |
Aspartate aminotransferase increase | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 0 (0.0%) |
Blood creatine phosphokinase increase | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 2 (16.7%) | 2 (16.7%) |
Metabolism and nutrition disorders | |||||
Hypercholesterolemia | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 0 (0.0%) | 0 (0.0%) |
Total number of AEs in group (n = 54) | 0 (0.0%) | 6 (11.1%) | 10 (18.5%) | 21 (38.9%) | 17 (31.5%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasina, D.V.; Kleymenov, D.A.; Manuylov, V.A.; Mazunina, E.P.; Koptev, E.Y.; Tukhovskaya, E.A.; Murashev, A.N.; Gintsburg, A.L.; Gushchin, V.A.; Tkachuk, A.P. First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines 2019, 7, 166. https://doi.org/10.3390/vaccines7040166
Vasina DV, Kleymenov DA, Manuylov VA, Mazunina EP, Koptev EY, Tukhovskaya EA, Murashev AN, Gintsburg AL, Gushchin VA, Tkachuk AP. First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines. 2019; 7(4):166. https://doi.org/10.3390/vaccines7040166
Chicago/Turabian StyleVasina, Daria V., Denis A. Kleymenov, Victor A. Manuylov, Elena P. Mazunina, Egor Yu. Koptev, Elena A. Tukhovskaya, Arkady N. Murashev, Alexander L. Gintsburg, Vladimir A. Gushchin, and Artem P. Tkachuk. 2019. "First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment" Vaccines 7, no. 4: 166. https://doi.org/10.3390/vaccines7040166
APA StyleVasina, D. V., Kleymenov, D. A., Manuylov, V. A., Mazunina, E. P., Koptev, E. Y., Tukhovskaya, E. A., Murashev, A. N., Gintsburg, A. L., Gushchin, V. A., & Tkachuk, A. P. (2019). First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines, 7(4), 166. https://doi.org/10.3390/vaccines7040166