Mutations in VP0 and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Ethics Statement
2.2. Viruses
2.3. RNA Isolation and Complementary DNA (cDNA) Synthesis
2.4. Complete Genome Sequencing and Comparisons
2.5. Replication Capacity of the Strains in Embryonated Duck Eggs
2.6. In Vivo Virus Infection
2.6.1. Histopathological Analysis
2.6.2. Viral Proliferation
2.6.3. Innate Immune Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Two Mutations to the VP0 and the 2C Proteins are Involved in Embryo Adaptation of DHAV-3
3.2. The Replication Capacity of the Strains in Embryonated Duck Eggs
3.3. Clinical Signs and Gross Pathology of Ducklings Inoculated with the Virulent DHAV-3 Strain and Related Embryo-Adapted Strain
3.4. Histopathologic Lesions of the Liver Tissues of Ducklings Inoculated with the Virulent DHAV-3 Strain and Related Embryo-Adapted Strain
3.5. Replication Capacity of the Attenuated Strain Was Restricted in the Livers of the Inoculated Ducklings
3.6. The Attenuated Strain Lead to the Activation of Unique Innate Immune Genes in the Liver Tissues of the Inoculated Ducklings
3.6.1. The PRRs Expression Analysis
3.6.2. The IFNs Expression Analysis
3.6.3. The Proinflammatory Cytokines and Anti-Inflammatory Cytokines Expression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yugo, D.M.; Hauck, R.; Shivaprasad, H.L.; Meng, X.-J. Hepatitis Virus Infections in Poultry. Avian Dis. 2016, 60, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhu, D.; Cheng, A.; Wang, M.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; Zhao, X.; Yang, Q.; et al. Molecular epidemiology of duck hepatitis a virus types 1 and 3 in China, 2010–2015. Transbound. Emerg. Dis. 2018, 65, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Alfajaro, M.M.; Lee, M.H.; Jeong, Y.J.; Kim, D.S.; Son, K.Y.; Kwon, J.; Choi, J.S.; Lim, J.S.; Choi, J.S.; et al. The prevalence of duck hepatitis A virus types 1 and 3 on Korean duck farms. Arch. Virol. 2015, 160, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Roh, J.-H.; Jang, H.-K. Protective efficacy of a bivalent live attenuated vaccine against duck hepatitis A virus types 1 and 3 in ducklings. Vet. Microbiol. 2018, 214, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yue, H.; Zhang, B.; Nie, P.; Tang, C. Development of a Real-Time Quantitative PCR for Detecting Duck Hepatitis A Virus Genotype C. J. Clin. Microbiol. 2012, 50, 3318–3323. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, H.; Pi, J.; Tang, C.; Yue, H.; Yang, F. An experimental study of the pathogenicity of a duck hepatitis A virus genotype C isolate in specific pathogen free ducklings. Avian Pathol. 2012, 41, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Mao, S.; Cao, J.; Ma, Y.; Ma, G.; Cheng, A.; Wang, M.; Zhu, D.; Chen, S.; Jia, R.; et al. The neglected avian hepatotropic virus induces acute and chronic hepatitis in ducks: An alternative model for hepatology. Oncotarget 2017, 8, 81838–81851. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.Q.; Xie, C.Q.; Hu, X.Y.; Bi, D.R.; Cheng, G.F.; Zhang, W.P. Cytokine gene expression in the livers of ducklings infected with duck hepatitis virus-1 JX strain. Poult. Sci. 2012, 91, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.Q.; Hu, X.Y.; Cheng, G.F.; Sheng, X.D.; Zhang, W.P. Apoptosis induction in duck tissues during duck hepatitis A virus type 1 infection. Poult. Sci. 2014, 93, 527–534. [Google Scholar][Green Version]
- Liu, R.; Shi, S.; Huang, Y.; Chen, Z.; Chen, C.; Cheng, L.; Fu, G.; Chen, H.; Wan, C.; Fu, Q.; et al. Comparative pathogenicity of different subtypes of duck hepatitis A virus in Pekin ducklings. Vet. Microbiol. 2019, 228, 181–187. [Google Scholar] [CrossRef]
- Piconese, S.; Cammarata, I.; Barnaba, V. Viral hepatitis, inflammation, and cancer: A lesson for autoimmunity. J. Autoimmun. 2018, 95, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Taubert, R.; Hupa-Breier, K.L.; Jaeckel, E.; Manns, M.P. Novel therapeutic targets in autoimmune hepatitis. J. Autoimmun. 2018, 95, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Czaja, A.J. Autoimmune Hepatitis. In Liver Pathophysiology; Muriel, P., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 61–85. [Google Scholar]
- Floreani, A.; Restrepo-Jimenez, P.; Secchi, M.F.; De Martin, S.; Leung, P.S.C.; Krawitt, E.; Bowlus, C.L.; Gershwin, M.E.; Anaya, J.M. Etiopathogenesis of autoimmune hepatitis. J. Autoimmun. 2018, 95, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, C.; Qu, Z.; Zhang, W.; Liu, Y.; Qi, H.; Hao, C.; Zhang, W.; Gao, M.; Wang, J.; et al. Pathogenicity of duck hepatitis A virus type 3 and innate immune responses of the ducklings to virulent DHAV-3. Mol. Immunol. 2018, 95, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, C.; Liu, Y.; Qi, H.; Zhang, W.; Hao, C.; Chen, H.; Zhang, Q.; Zhang, W.; Gao, M.; et al. Comparative liver transcriptome analysis in ducklings infected with duck hepatitis A virus 3 (DHAV-3) at 12 and 48 hours post-infection through RNA-seq. Vet. Res. 2018, 49, 52. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shen, Y.; Cheng, A.; Wang, M.; Chen, S.; Jia, R.; Zhu, D.; Liu, M.; Sun, K.; Yang, Q.; Chen, X. Development of an indirect ELISA method based on the VP3 protein of duck hepatitis A virus type 1 (DHAV-1) for dual detection of DHAV-1 and DHAV-3 antibodies. J. Virol. Methods 2015, 225, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.J.; Cheng, A.C.; Wang, M.S.; Jia, R.Y.; Zhu, D.K.; Chen, S.; Liu, M.F.; Liu, F.; Chen, X.Y. Detection, differentiation, and VP1 sequencing of duck hepatitis A virus type 1 and type 3 by a 1-step duplex reverse-transcription PCR assay. Poult. Sci. 2014, 93, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhang, X.; Gao, Y.; Song, S.; Xu, D.; Yan, L. Development and application of multiplex PCR method for simultaneous detection of seven viruses in ducks. BMC Vet. Res. 2019, 15, 103. [Google Scholar] [CrossRef]
- Li, J.; Bi, Y.; Chen, C.; Yang, L.; Ding, C.; Liu, W. Genetic characterization of Duck Hepatitis A Viruses isolated in China. Virus Res. 2013, 178, 211–216. [Google Scholar] [CrossRef]
- Xie, J.; Wang, M.; Cheng, A.; Zhao, X.X.; Liu, M.; Zhu, D.; Chen, S.; Jia, R.; Yang, Q.; Wu, Y.; et al. Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1. Sci. Rep. 2018, 8, 6596. [Google Scholar] [CrossRef]
- Soman, S.S.; Arathy, D.S.; Sreekumar, E. Discovery of Anas platyrhynchos avian beta-defensin 2 (Apl_AvBD2) with antibacterial and chemotactic functions. Mol. Immunol. 2009, 46, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-Y.; Su, S.; Huang, Z.; Zhu, W.-J.; Chen, J.-D.; Zhao, F.-R.; Wang, Y.-J.; Xie, J.-X.; Wang, H.; Zhang, G. Complete Genome Sequence of a Novel Duck Hepatitis A Virus Discovered in Southern China. J. Virol. 2012, 86, 10247. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, R.; Chen, L.; Yang, L.; Li, J.; Dou, P.; Wang, H.; Xie, Z.; Wang, Y.; Jiang, S. Complete Genome Sequence of a Duck Hepatitis A Virus Type 3 Identified in Eastern China. J. Virol. 2012, 86, 13848. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Boil. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhu, D.; Ma, G.; Cheng, A.; Wang, M.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; Yang, Q.; et al. A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3. J. Virol. Methods 2016, 236, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Wang, M.; Ou, X.; Sun, D.; Cheng, A.; Zhu, D.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; et al. Virologic and Immunologic Characteristics in Mature Ducks with Acute Duck Hepatitis A Virus 1 Infection. Front. Immunol. 2017, 8, 1574. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yu, S.; Duan, Y.; Hu, Y.; Qiu, X.; Tan, L.; Sun, Y.; Wang, M.; Cheng, A.; Ding, C. Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. Arch. Virol. 2014, 159, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Wang, M.; Mao, S.; Cao, J.; Cheng, A.; Zhu, D.; Chen, S.; Jia, R.; Liu, M.; Yang, Q.; et al. Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Front. Cell. Infect. Microbiol. 2018, 8, 249. [Google Scholar] [CrossRef]
- Ou, X.; Mao, S.; Cao, J.; Cheng, A.; Wang, M.; Zhu, D.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; et al. Comparative analysis of virus-host interactions caused by a virulent and an attenuated duck hepatitis A virus genotype 1. PLoS ONE 2017, 12, e0178993. [Google Scholar] [CrossRef]
- Ou, X.; Mao, S.; Jiang, Y.; Zhang, S.; Ke, C.; Ma, G.; Cheng, A.; Wang, M.; Zhu, D.; Chen, S.; et al. Viral-host interaction in kidney reveals strategies to escape host immunity and persistently shed virus to the urine. Oncotarget 2017, 8, 7336–7349. [Google Scholar] [CrossRef]
- Du, H.; Bai, J.; Wang, J.; He, M.; Xiong, W.; Yuan, W.; Qiao, M.; Ming, K.; Wu, Y.; Wang, D.; et al. Assessment of the hepatocyte protective effects of gypenoside and its phosphorylated derivative against DHAV-1 infection on duck embryonic hepatocytes. BMC Vet. Res. 2019, 15, 134. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhang, W.; Yuan, W.; Du, H.; Ming, K.; Yao, F.; Bai, J.; Chen, Y.; Liu, J.; Wang, D.; et al. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways. Front. Microbiol. 2017, 8, 1850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Xian, L.; Song, M.; Zeng, L.; Xiong, W.; Liu, J.; Sun, W.; Wang, D.; Hu, Y. Effects of Bush Sophora Root polysaccharide and its sulfate on immuno-enhancing of the therapeutic DVH. Int. J. Boil. Macromol. 2015, 80, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yang, J.; Bai, J.; Ming, K.; Shi, J.; Yao, F.; Zhang, W.; Yu, Y.; Chen, Y.; Xiong, W.; et al. A flavone-polysaccharide based prescription attenuates the mitochondrial dysfunction induced by duck hepatitis A virus type 1. PLoS ONE 2017, 12, e0175495. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, M.; Cheng, A.; Zhao, X.X.; Liu, M.; Zhu, D.; Chen, S.; Jia, R.; Yang, Q.; Wu, Y.; et al. DHAV-1 Inhibits Type I Interferon Signaling to Assist Viral Adaption by Increasing the Expression of SOCS3. Front. Immunol. 2019, 10, 731. [Google Scholar] [CrossRef][Green Version]
- Tang, C.; Lan, D.; Zhang, H.; Ma, J.; Yue, H. Transcriptome Analysis of Duck Liver and Identification of Differentially Expressed Transcripts in Response to Duck Hepatitis A Virus Genotype C Infection. PLoS ONE 2013, 8, e71051. [Google Scholar] [CrossRef]
- Kim, M.-C.; Kim, M.-J.; Kwon, Y.-K.; Lindberg, A.M.; Joh, S.-J.; Kwon, H.-M.; Lee, Y.-J.; Kwon, J.-H. Development of duck hepatitis A virus type 3 vaccine and its use to protect ducklings against infections. Vaccine 2009, 27, 6688–6694. [Google Scholar] [CrossRef]
- Cha, S.-Y.; Roh, J.-H.; Kang, M.; Kim, B.; Jang, H.-K. Isolation and characterization of a low pathogenic duck hepatitis A virus 3 from South Korea. Vet. Microbiol. 2013, 162, 254–258. [Google Scholar] [CrossRef]
- Wen, X.; Sun, D.; Guo, J.; Elgner, F.; Wang, M.; Hildt, E.; Cheng, A. Multifunctionality of structural proteins in the enterovirus life cycle. Futur. Microbiol. 2019. [Google Scholar] [CrossRef]
- Wen, X.; Cheng, A.; Wang, M.; Jia, R.; Zhu, D.; Chen, S.; Liu, M.; Sun, K.; Yang, Q.; Wu, Y.; et al. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol. 2015, 10, 1529–1542. [Google Scholar] [CrossRef]
- Sun, L.; Tijsma, A.; Mirabelli, C.; Baggen, J.; Wahedi, M.; Franco, D.; De Palma, A.; Leyssen, P.; Verbeken, E.; Van Kuppeveld, F.J.M.; et al. Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerg. Microbes Infect. 2019, 8, 1076–1085. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, S.-W.; Wang, Y.-F.; Yu, C.-K.; Su, I.-J.; Wang, J.-R. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012, 422, 132–143. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xue, M.; Wang, H.; Li, W.; Zhou, G.; Tu, Y.; Yu, L. Effects of amino acid substitutions in the VP2 B-C loop on antigenicity and pathogenicity of serotype Asia1 foot-and-mouth disease virus. Virol. J. 2012, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Horsington, J.; Zhang, Z. Consistent change in the B–C loop of VP2 observed in foot-and-mouth disease virus from persistently infected cattle: Implications for association with persistence. Virus Res. 2007, 125, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Biswal, J.K.; Mohapatra, J.K.; Bisht, P.; Subramaniam, S.; Sanyal, A.; Pattnaik, B. A positively charged lysine residue at VP2 131 position allows for the enhanced adaptability of foot-and-mouth disease virus serotype A in BHK-21 cells. Biologicals 2015, 43, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, K.; Barnett, P.V.; Wadsworth, J.; Knowles, N.J.; Gold, S.; Fowler, V.L.; Jackson, T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J. Gen. Virol. 2015, 96, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.-W.; Bao, H.-F.; Li, P.-H.; Ma, X.-Q.; Sun, P.; Bai, Q.-F.; Zhang, M.; Yuan, H.; Chen, D.-D.; Li, K.; et al. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J. Virol. 2019, 93. [Google Scholar] [CrossRef][Green Version]
- Kim, D.S.; Park, J.H.; Kim, J.Y.; Kim, D.; Nam, J.H. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3. Virus Genes 2012, 44, 176–182. [Google Scholar] [CrossRef]
- Knowlton, K.U.; Jeon, E.S.; Berkley, N.; Wessely, R.; Huber, S. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J. Virol. 1996, 70, 7811–7818. [Google Scholar] [PubMed]
- Park, J.-H.; Kim, D.-S.; Cho, Y.-J.; Kim, Y.-J.; Jeong, S.-Y.; Lee, S.-M.; Cho, S.-J.; Yun, C.-W.; Jo, I.; Nam, J.-H. Attenuation of coxsackievirus B3 by VP2 mutation and its application as a vaccine against virus-induced myocarditis and pancreatitis. Vaccine 2009, 27, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.M.; Kallio, P.; Luo, M.; Lipton, H.L. Amino Acid Substitutions in VP2 Residues Contacting Sialic Acid in Low-Neurovirulence BeAn Virus Dramatically Reduce Viral Binding and Spread of Infection. J. Virol. 2003, 77, 2709–2716. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsunoda, I.; Wada, Y.; Libbey, J.E.; Cannon, T.S.; Whitby, F.G.; Fujinami, R.S. Prolonged Gray Matter Disease without Demyelination Caused by Theiler’s Murine Encephalomyelitis Virus with a Mutation in VP2 Puff B. J. Virol. 2001, 75, 7494–7505. [Google Scholar] [CrossRef] [PubMed]
- Van Ooij, M.J.M.; Vogt, D.A.; Paul, A.; Castro, C.; Kuijpers, J.; Van Kuppeveld, F.J.M.; Cameron, C.E.; Wimmer, E.; Andino, R.; Melchers, W.J.G. Structural and functional characterization of the coxsackievirus B3 CRE(2C): Role of CRE(2C) in negative- and positive-strand RNA synthesis. J. Gen. Virol. 2006, 87, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Wang, P.; Wang, G.C.; Yang, J.; Sun, X.; Wu, W.; Qiu, Y.; Shu, T.; Zhao, X.; Yin, L.; et al. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathog. 2015, 11, e1005067. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, H.C.; Wimmer, E.; Jiang, P.; Paul, A.V. A C-terminal, cysteine-rich site in poliovirus 2C(ATPase) is required for morphogenesis. J. Gen. Virol. 2014, 95, 1255–1265. [Google Scholar] [CrossRef]
- Asare, E.; Mugavero, J.; Jiang, P.; Wimmer, E.; Paul, A.V. A Single Amino Acid Substitution in Poliovirus Nonstructural Protein 2CATPase Causes Conditional Defects in Encapsidation and Uncoating. J. Virol. 2016, 90, 6174–6186. [Google Scholar] [CrossRef]
- Teterina, N.L.; Bienz, K.; Egger, D.; Gorbalenya, A.E.; Ehrenfeld, E. Induction of Intracellular Membrane Rearrangements by HAV Proteins 2C and 2BC. Virology 1997, 237, 66–77. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, L.; Fan, H.; Song, Z.; Liu, X.; Bai, J.; Jiang, P. Encephalomyocarditis virus 2C protein antagonizes interferon-beta signaling pathway through interaction with MDA5. Antivir. Res. 2018, 161, 70–84. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, Z.; Liu, Y.; Zhang, Z.; Liu, Q.; Meng, J.; Ke, X.; Hu, Q.; Wang, H. 2C Proteins of Enteroviruses Suppress IKKbeta Phosphorylation by Recruiting Protein Phosphatase 1. J. Virol. 2016, 90, 5141–5151. [Google Scholar] [CrossRef]
- Du, H.; Yin, P.; Yang, X.; Zhang, L.; Jin, Q.; Zhu, G. Enterovirus 71 2C Protein Inhibits NF-kappaB Activation by Binding to RelA(p65). Sci. Rep. 2015, 5, 14302. [Google Scholar] [CrossRef]
- Emerson, S.U.; Huang, Y.K.; Nguyen, H.; Brockington, A.; Govindarajan, S.; Claire, M.S.; Shapiro, M.; Purcell, R.H. Identification of VP1/2A and 2C as Virulence Genes of Hepatitis A Virus and Demonstration of Genetic Instability of 2C. J. Virol. 2002, 76, 8551–8559. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Emerson, S.U.; Huang, Y.K.; Purcell, R.H. 2B and 2C Mutations Are Essential but Mutations throughout the Genome of HAV Contribute to Adaptation to Cell Culture. Virology 1993, 194, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Weilandt, R.; Paulmann, D.; Schlottau, K.; Vallbracht, A.; Dotzauer, A. Mutational modifications of hepatitis A virus proteins 2B and 2C described for cell culture-adapted and attenuated virus are present in wild-type virus populations. Arch. Virol. 2014, 159, 2699–2704. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, V.; Purcell, R.H.; Emerson, S.U. Partial characterization of hepatitis A viruses from three intermediate passage levels of a series resulting in adaptation to growth in cell culture and attenuation of virulence. J. Med. Virol. 1993, 39, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Meng, R.; Jiang, Y.; Liang, S.; Zhang, Y.; Xie, M.; Zhou, Z.; Hou, S. Host Differences Affecting Resistance and Susceptibility of the Second Generation of a Pekin Duck Flock to Duck Hepatitis A Virus Genotype 3. Front. Microbiol. 2017, 8, 1128. [Google Scholar] [CrossRef][Green Version]
- Byun, J.-S.; Suh, Y.-G.; Yi, H.-S.; Lee, Y.-S.; Jeong, W.-I. Activation of toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J. Hepatol. 2013, 58, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Mihailidou, C.; Papavassiliou, A.G.; Kiaris, H. Cell-autonomous cytotoxicity of type I interferon response via induction of endoplasmic reticulum stress. FASEB J. 2017, 31, 5432–5439. [Google Scholar] [CrossRef]
- Di Domizio, J.; Cao, W. Fueling Autoimmunity: Type I Interferon in Autoimmune Diseases. Expert Rev. Clin. Immunol. 2013, 9, 201–210. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Kowalec, K.; Wright, G.E.B.; Drogemoller, B.I.; Aminkeng, F.; Bhavsar, A.P.; Kingwell, E.; Yoshida, E.M.; Traboulsee, A.; Marrie, R.A.; Kremenchutzky, M.; et al. Common variation near IRF6 is associated with IFN-beta-induced liver injury in multiple sclerosis. Nat. Genet. 2018, 50, 1081–1085. [Google Scholar] [CrossRef]
- Rojas, J.M.; Avia, M.; Martín, V.; Sevilla, N. IL-10: A Multifunctional Cytokine in Viral Infections. J. Immunol. Res. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boer, M.A.M.D.; Voshol, P.J.; Der Elst, J.P.S.-V.; Korsheninnikova, E.; Ouwens, D.M.; Kuipers, F.; Havekes, L.M.; Romijn, J.A. Endogenous Interleukin-10 Protects against Hepatic Steatosis but Does Not Improve Insulin Sensitivity during High-Fat Feeding in Mice. Endocrinology 2006, 147, 4553–4558. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sabat, R.; Grutz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Uhde, A.-K.; Ciurkiewicz, M.; Herder, V.; Khan, M.A.; Hensel, N.; Claus, P.; Beckstette, M.; Teich, R.; Floess, S.; Baumgärtner, W.; et al. Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Sci. Rep. 2018, 8, 6106. [Google Scholar] [CrossRef] [PubMed]
- Naseem, S.; Hussain, T.; Manzoor, S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev. 2018, 39, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, J.; Li, X.; Xing, Q.; Du, P.; Su, L.; Wang, S. Interleukin-6 induces Gr-1+CD11b+ myeloid cells to suppress CD8+ T cell-mediated liver injury in mice. PLoS ONE 2011, 6, e17631. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Sense Primer (5’-3’) | Antisense Primer (5’-3’) |
---|---|---|
β-actin | TACGCCAACACGGTGCTG | GATTCATCATACTCCTGCTTG |
TLR-3 | AACACTCCGCCTAAGTATCAT | CTATCCTCCACCCTTCAAAA |
TLR-7 | CCTTTCCCAGAGAGCATTCA | TCAAGAAATATCAAGATAATCACATCA |
MDA5 | CTGCCCGCTACTTGAACTCCA | GCACCATCTCTGTTCCCACGA |
RIG-1 | GCGTACCGCTATAACCCACA | CCTTGCTGGTTTTGAACGC |
NLRP-3 | CATCCCAGTGAAGCGTTGA | GCCATCTGGTCGTATAGCG |
IFN-α | TCCACCTCCTCCAACACCTC | TGGGAAGCAGCGCTCGAG |
IFN-β | CCTCAACCAGATCCAGCATT | GGATGAGGCTGTGAGAGGAG |
IFN-γ | GCTGATGGCAATCCTGTTTT | GGATTTTCAAGCCAGTCAGC |
IL-1β | TCGACATCAACCAGAAGTGC | GAGCTTGTAGCCCTTGATGC |
IL-2 | TCCCTGAATTTCGCCAAG | AGCGGACAGCAAGTTAGGTAGC |
IL-4 | TACCTCAACTTGCTGCACATC | GCTACTCGTTGGAGGGTTCT |
IL-6 | TTCGACGAGGAGAAATGCTT | CCTTATCGTCGTTGCCAGAT |
IL-10 | AGCAGCGAGCACCACCA | TGCCGTTCTCGTTCATCTTT |
TNF-α | TTTTATGACCGCCCAGTT | TAGGCAGAGGCCACCA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Guo, J.; Sun, D.; Wang, M.; Cao, D.; Cheng, A.; Zhu, D.; Liu, M.; Zhao, X.; Yang, Q.; et al. Mutations in VP0 and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines 2019, 7, 111. https://doi.org/10.3390/vaccines7030111
Wen X, Guo J, Sun D, Wang M, Cao D, Cheng A, Zhu D, Liu M, Zhao X, Yang Q, et al. Mutations in VP0 and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines. 2019; 7(3):111. https://doi.org/10.3390/vaccines7030111
Chicago/Turabian StyleWen, Xingjian, Jinlong Guo, Di Sun, Mingshu Wang, Dian Cao, Anchun Cheng, Dekang Zhu, Mafeng Liu, Xinxin Zhao, Qiao Yang, and et al. 2019. "Mutations in VP0 and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence" Vaccines 7, no. 3: 111. https://doi.org/10.3390/vaccines7030111