T Cell Memory to Vaccination
Abstract
:1. Introduction
2. Human T Cell Effector and Memory Phenotypes
3. Measurement of Vaccine-Associated T Cells
4. Conclusions
Funding
Conflicts of Interest
References
- Gray, J.I.; Westerhof, L.M.; MacLeod, M.K.L. The roles of resident, central and effector memory CD4 T-cells in protective immunity following infection or vaccination. Immunology 2018. [Google Scholar] [CrossRef] [PubMed]
- Jameson, S.C.; Masopust, D. Understanding Subset Diversity in T Cell Memory. Immunity 2018, 48, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Moncunill, G.; De Rosa, S.C.; Ayestaran, A.; Nhabomba, A.J.; Mpina, M.; Cohen, K.W.; Jairoce, C.; Rutishauser, T.; Campo, J.J.; Harezlak, J.; et al. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Complex correlates of protection after vaccination. Clin. Infect. Dis. 2013, 56, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- de Bree, L.C.J.; Koeken, V.A.C.M.; Joosten, L.A.B.; Aaby, P.; Benn, C.S.; van Crevel, R.; Netea, M.G. Non-specific effects of vaccines: Current evidence and potential implications. Semin. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mourits, V.P.; Wijkmans, J.C.; Joosten, L.A.; Netea, M.G. Trained immunity as a novel therapeutic strategy. Curr. Opin. Pharmacol. 2018, 41, 52–58. [Google Scholar] [CrossRef]
- O′Shea, J.J.; Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010, 327, 1098–1102. [Google Scholar] [CrossRef]
- Sallusto, F. Heterogeneity of Human CD4+ T Cells Against Microbes. Annu. Rev. Immunol. 2016, 34, 317–334. [Google Scholar] [CrossRef]
- Zinkernagel, R.M. What if protective immunity is antigen-driven and not due to so-called “memory” B and T cells? Immunol. Rev. 2018, 283, 238–246. [Google Scholar] [CrossRef]
- Wilk, M.M.; Mills, K.H.G. CD4 T(RM) Cells Following Infection and Immunization: Implications for More Effective Vaccine Design. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Takamura, S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front. Immunol. 2018. [Google Scholar] [CrossRef]
- Olsen, T.M.; Stone, B.C.; Chuenchob, V.; Murphy, S.C. Prime-and-Trap Malaria Vaccination To Generate Protective CD8(+) Liver-Resident Memory T Cells. J. Immunol. 2018, 201, 1984–1993. [Google Scholar] [CrossRef]
- Lumsden, J.M.; Schwenk, R.J.; Rein, L.E.; Moris, P.; Janssens, M.; Ofori-Anyinam, O.; Cohen, J.; Kester, K.E.; Heppner, D.G.; Krzych, U. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells. PLoS ONE 2011, 6, e20775. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Speiser, D.E.; Lichterfeld, M.; Bonini, C. T memory stem cells in health and disease. Nat. Med. 2017, 23, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, C.G.; Linterman, M.A.; Yu, D.; MacLennan, I.C. Follicular Helper T Cells. Annu. Rev. Immunol. 2016, 34, 335–368. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 2015, 15, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangye, S.G.; Deenick, E.K.; Palendira, U.; Ma, C.S. T cell-B cell interactions in primary immunodeficiencies. Ann. N. Y. Acad. Sci. 2012, 1250, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, G.; Rampling, T.; Powlson, J.; Morter, R.; Wright, D.; Hill, A.V.S.; Ewer, K.J. Activation-induced Markers Detect Vaccine-Specific CD4+ T Cell Responses Not Measured by Assays Conventionally Used in Clinical Trials. Vaccines 2018, 6, 50. [Google Scholar] [CrossRef]
- Crespo, J.; Sun, H.; Welling, T.H.; Tian, Z.; Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 2013, 25, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Voss, G.; Casimiro, D.; Neyrolles, O.; Williams, A.; Kaufmann, S.H.E.; McShane, H.; Hatherill, M.; Fletcher, H.A. Progress and challenges in TB vaccine development. F1000Research 2018, 7, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; et al. Phase 2b Controlled Trial of M72/AS01(E) Vaccine to Prevent Tuberculosis. N. Engl. J. Med. 2018, 379, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Haks, M.C.; Bottazzi, B.; Cecchinato, V.; De Gregorio, C.; Del Giudice, G.; Kaufmann, S.H.E.; Lanzavecchia, A.; Lewis, D.J.M.; Maertzdorf, J.; Mantovani, A.; et al. Molecular Signatures of Immunity and Immunogenicity in Infection and Vaccination. Front. Immunol. 2017, 8, 1563. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, J.; Azizi, A.; Ausar, S.F.; Todryk, S.M.; Rahman, N.; Brookes, R.H. An adjuvant-modulated vaccine response in human whole blood. Hum. Vaccin. Immunother. 2017, 13, 2130–2134. [Google Scholar] [CrossRef] [PubMed]
Features | Th1 | Th2 | Th17 | TFh | Treg | Th22 | CTL | |
---|---|---|---|---|---|---|---|---|
Secreted Molecules: (function) | IFNγ, IL-2, TNFα | IL-4, IL-5, IL-13, IL-9 | IL-17 A/F | IL-21 | +/-IL-10, TGFβ | IL-22 | IFNγ, lytic enzymes | |
Microbial Target/location: | intra-MΦ | parasites | extracellular | all | - | epithelial | intracellular | |
CXCR3 (inflammation) | + | + | ||||||
CCR4 (CC chemokines) | + | +/− | ||||||
CCR6 (mucosal) | + | |||||||
CCR5 (inflammation) | + | |||||||
CD161 (NK cell receptor) | + | |||||||
CCR10 (skin homing) | + | |||||||
CD25 (IL-2Rα) | +hi | |||||||
CXCR5 (B cell homing) | + | |||||||
PD-1 (inhibitory) | + | |||||||
Others | ICOS, CD40L, OX40 | TIM-3, LAG-3 | ||||||
Transcription factors | Tbet, STAT1/4 | GATA-3, STAT6 | RORγt, STAT3 | Bcl-6 | FoxP3, STAT5 | AHR | Eomes, RUNX3 |
Markers | Function | TN | TEM | TEMRA/TE | TCM | TSCM | TRM | Exhausted T Cell |
---|---|---|---|---|---|---|---|---|
CD45RA | signalling | + | − | + | − | + | +/− | |
CD45RO | signalling | − | + | − | + | − | +/− | |
CD62L | homing | + | −lo | −lo | + | + | − | |
IL-7Ra (CD127) | proliferation | + | +/− | − | +hi | + | − | |
CD95 | cell death | − | +hi | +hi | +hi | + | + | |
CCR7 | homing | +hi | −lo | −lo | +hi | + | − | |
CD103 (αE) | epithelial homing | − | + | + | ||||
CD69 | activation | − | +/− | + | − | − | + | |
CD28 | costimulation | +int | lo | −lo | +hi | + | +/− | − |
CD27 | costimulation | +hi | +/− | − | + | + | ||
CXCR3 | inflammation | − | − | − | + | + | + | |
CD57 | differentiation | − | +/− | + | − | − | + | |
PD-1 | inhibitory | − | + | +/− | − | +/− | + |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todryk, S.M. T Cell Memory to Vaccination. Vaccines 2018, 6, 84. https://doi.org/10.3390/vaccines6040084
Todryk SM. T Cell Memory to Vaccination. Vaccines. 2018; 6(4):84. https://doi.org/10.3390/vaccines6040084
Chicago/Turabian StyleTodryk, Stephen M. 2018. "T Cell Memory to Vaccination" Vaccines 6, no. 4: 84. https://doi.org/10.3390/vaccines6040084
APA StyleTodryk, S. M. (2018). T Cell Memory to Vaccination. Vaccines, 6(4), 84. https://doi.org/10.3390/vaccines6040084