Next Article in Journal
Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment
Next Article in Special Issue
The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant
Previous Article in Journal / Special Issue
Replicon RNA Viral Vectors as Vaccines
Article Menu

Export Article

Open AccessArticle
Vaccines 2016, 4(4), 40;

Edwardsiella tarda OmpA Encapsulated in Chitosan Nanoparticles Shows Superior Protection over Inactivated Whole Cell Vaccine in Orally Vaccinated Fringed-Lipped Peninsula Carp (Labeo fimbriatus)

Department of Fisheries Microbiology, Karnataka Veterinary, Animal & Fisheries Sciences University, College of Fisheries, Mangalore 575002, India
Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Adamstuen Campus, Ullevålseveien 72, P.O. Box 8146, NO-0033 Dep, Oslo 0454, Norway
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka State, India
UNESCO MIRCEN for Marine Biotechnology, Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangalore 575018, India
Author to whom correspondence should be addressed.
Academic Editor: Olga Borges
Received: 14 July 2016 / Revised: 21 October 2016 / Accepted: 28 October 2016 / Published: 7 November 2016
(This article belongs to the Special Issue Nanoparticles to Co-Deliver Immunopotentiators and Antigens)
Full-Text   |   PDF [3387 KB, uploaded 7 November 2016]   |  


The use of oral vaccination in finfish has lagged behind injectable vaccines for a long time as oral vaccines fall short of injection vaccines in conferring protective immunity. Biodegradable polymeric nanoparticles (NPs) have shown potential to serve as antigen delivery systems for oral vaccines. In this study the recombinant outer membrane protein A (rOmpA) of Edwardsiella tarda was encapsulated in chitosan NPs (NP-rOmpA) and used for oral vaccination of Labeo fimbriatus. The rOmpA purity was 85%, nanodiameter <500 nm, encapsulation efficiency 60.6%, zeta potential +19.05 mV, and there was an in vitro release of 49% of encapsulated antigen within 48 h post incubation in phosphate-buffered saline. Empty NPs and a non-formulated, inactivated whole cell E. tarda (IWC-ET) vaccine were used as controls. Post-vaccination antibody levels were significantly (p = 0.0458) higher in the NP-rOmpA vaccinated fish (Mean OD450 = 2.430) than in fish vaccinated with inactivated whole cell E. tarda (IWC-ET) vaccine (Mean OD450 = 1.735), which corresponded with post-challenge survival proportions (PCSP) of 73.3% and 48.28% for the NP-rOmpA and IWC-ET groups, respectively. Serum samples from NP-rOmpA-vaccinated fish had a higher inhibition rate for E. tarda growth on tryptic soy agar (TSA) than the IWC-ET group. There was no significant difference (p = 0.989) in PCSPs between fish vaccinated with empty NPs and the unvaccinated control fish, while serum from both groups showed no detectable antibodies against E. tarda. Overall, these data show that the NP-rOmpA vaccine produced higher antibody levels and had superior protection over the IWC-ET vaccine, showing that encapsulating OmpA in chitosan NPs confer improved protection against E. tarda mortality in L. fimbriatus. There is a need to elucidate the possible adjuvant effects of chitosan NPs and the immunological mechanisms of protective immunity induced by OMPs administered orally to fish. View Full-Text
Keywords: carp; chitosan; nanoparticle; oral; outer membrane protein; vaccination carp; chitosan; nanoparticle; oral; outer membrane protein; vaccination

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Dubey, S.; Avadhani, K.; Mutalik, S.; Sivadasan, S.M.; Maiti, B.; Girisha, S.K.; Venugopal, M.N.; Mutoloki, S.; Evensen, Ø.; Karunasagar, I.; Munang′andu, H.M. Edwardsiella tarda OmpA Encapsulated in Chitosan Nanoparticles Shows Superior Protection over Inactivated Whole Cell Vaccine in Orally Vaccinated Fringed-Lipped Peninsula Carp (Labeo fimbriatus). Vaccines 2016, 4, 40.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Vaccines EISSN 2076-393X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top