Therapeutic Vaccine Strategies against Human Papillomavirus
Abstract
:1. Introduction
2. Current Therapeutic HPV Vaccine Strategies
2.1. Importance of Choosing the Appropriate Antigen
2.2. Protein-Based Therapeutic HPV Vaccines
Antigen/Composition | Adjuvant | Route of Injection | Phase of Study | Patient Population | Immune Response | Clinical Response | References |
---|---|---|---|---|---|---|---|
HPV16 E7 + adenylate cyclase (ProCervix) | Imiquimod | ID | I | 47 HPV16+ and/or 18+ women with normal cervical cytology | Antigen-specific T cell responses | High viral clearance | PC10VAC01 |
ProCervix | Imiquimod | ID | II | 220 HPV16+ and/or 18+ women with normal cervical cytology or mild cervical cellular dyskaryosis | Ongoing | Ongoing | PC10VAC02 NCT01957878 |
HPV16 E6 E7 and L2 fusion protein (TA-CIN) | - | IM | I | 40 healthy volunteers | Antigen-specific T cell responses | No clinical measures in study | de Jong 2002 [29] |
TA-CIN | Imiquimod | IM | II | 19 VIN 2/3 | CTL responses | 12/19 CR | Daayana 2010 [30] |
TA-CIN (prime) TA-HPV (boost) | - | IM ID | I | 29 AGIN | Antigen-specific antibody/CTL responses | 6/29 PR 19/29 SD | Smyth 2004 [31] |
TA-HPV (prime) TA-CIN (boost) | - | ID IM | I | 10 VIN 2/3 | 9/10 Antigen-specific antibody/CTL responses | 3/10 PR | Davidson 2004 [32] |
TA-CIN (prime) TA-HPV (boost) | - | IM ID | II | 27 VIN 3 2 VAIN 3 | Antigen-specific antibody/CTL responses | 1/27 CR 5/27 PR 15/27 symptomatic improvement | Fiander 2006 [33] |
HPV16 E6 and E7 recombinant bacterial fusion protein | ISCOMATRIX | IM | I | 8 CIN 1 10 CIN 2 13 CIN 3 | Antigen-specific antibody, T cell and DTH responses | 4/31 CR (3 CIN 1 1 CINI2/3) 14 reduced viral load | Frazer 2004 [34] |
HPV16 E7 (mutated protein) and protein D of H. influenzae-fusion protein | AS02B | IM | I/II | 2 CIN 1 5 CIN 3 | 5/7 Antigen-specific T cell responses | CIN 3 0/5 PR CIN 1 2/2 PR | Hallez 2004 [35] |
HPV16 E7 and Hsp65 fusion protein (HspE7) | - | SC | II | 22 anal HSIL 14/22 anogential warts | None | 3/14 CR 10/14 PR | Goldstone 2002 [36] |
HspE7 | - | SC | I/II | 27 with respiratory papillomatosis | Not reported | Increase in median intersurgical interval | Derkay 2005 [37] |
HspE7 | - | SC | I/II | 15 HIV+ AIN 2/AIN 3 | Not reported | 1/15 CR 4/15 PR 10/15 NR | Palefsky 2006 [38] |
HspE7 | - | SC | II | 21 LSIL, HSIL, ASCUS or AGUS | 9/17 Antigen-specific T cell responses | 7/20 CR 1/20 PR 11/20 SD 1/20 NR | Roman 2007 [39] |
HspE7 | - | SC | II | 58 CIN 3 | Not reported | 13/58 CR 32/58 PR 11/58 SD 2/58 NR | Einstein 2007 [40] |
HPV6 L2-E7 fusion protein | AS02A | IM | II/III | 320 with anogenital warts | Antigen-specific antibody response | NR | Vandepapelière 2005 [41] |
2.3. Peptide Vaccines
2.3.1. Synthetic Long Peptides
2.3.2. Epitope-Specific Short Peptides
2.3.2.1. CTL Epitope Detection by Mass Spectrometry
2.3.2.2. Identification of Promiscuous T Helper Cell Epitopes
2.3.2.3. Current Epitope-Specific Vaccine Approaches
Antigen/Composition | Adjuvant | Route of Injection | Phase of Study | Patient Population | Immune Response | Clinical Response | References |
---|---|---|---|---|---|---|---|
Overlapping synthetic long peptides from HPV16 (9 E6 and 4 E7) (HPV16-SLP) | Montanide ISA 51 | SC | I | 35 end-stage CxCa | CTL response | NR | Kenter 2008 [49] |
HPV16-SLP | Montanide ISA 51 | SC | II | 6 with resected CxCa | CTL response | NR | Welters 2008 [50] |
HPV16-SLP | Montanide ISA 51 | SC | II | 20 VIN 3 | CTL response | 9 CR 6 PR | Kenter 2009 [51] |
HPV16-SLP | Montanide ISA 51 | SC | II | 9 HSIL | CTL response | NR | de Vos van Steenwijk 2012 [52] |
HPV16-SLP | Montanide ISA 51 | SC | II | 20 with advanced or recurrent gynecological carcinoma | CTL response | NR | van Poelgeest 2013 [53] |
HPV16-SLP | Montanide ISA 51 | SC | II | 50 with LSIL or persistent mild cytological cervical abnormalities | Antigen-specific CTL response | NR | de Vos van Steenwijk 2014 [54] |
HPV16 E711-20, E786-93 and PADRE | IFA | SC | I/II | 19 recurrent or residual CxCa | No antigen-specific CTL response | 2/19 PR 2/19 SD | van Driel 1999 [79] |
HPV16 E711-20, E786-93 and PADRE | Montanide ISA 51 | SC | I/II | 15 recurrent or residual CxCa | No antigen-specific CTL response | 2/15 SD 2/15 tumor regression after chemotherapy following vaccination | Ressing 2000 [80] |
HPV16 E786-93 lipopeptide and PADRE | - | SC | I | 12 CxCa or vaginal cancer | Antigen-specific CTL response in 7 patients | NR | Steller 1998 [81] |
HPV16 E712-20, E786–93 lipopeptides and PADRE | IFA | SC | I | 18 high grade CIN/VIN | CTL response in 10 patients | 3 CR 6 PR | Muderspach 2000 [82] |
HPV16-E786–93 (CIGB-228 vaccine) | Very small size proteo-liposomes (VSSP) | SC | I | 7 (2 CIN 2, 5 CIN 3) | CTL response | 5/7 CR and PR | Solares 2011 [83] |
Four HPV16-E6 peptides | Yeast extract (Candin®) | IL | I | 300 HSIL | Ongoing | Ongoing | NCT01653249 |
MAGE-A3 and HPV16 peptides | GM-CSF and Montanide ISA 51 | SC | I | 90 recurrent, progressive or metastatic HNSCC | Ongoing | Ongoing | NCT00257738 |
2.4. DNA Vaccines
Antigen/Composition | Adjuvant | Route of Injection | Phase of Study | Patient Population | Immune Response | Clinical Response | References |
---|---|---|---|---|---|---|---|
Plasmid encoding HPV16 E783-95 (ZYC101) | - | IM | I | 12 AIN | Antigen-specific responses in 10 patients | 3 PR | Klencke 2002 [90] |
ZYC101 | - | IM | I | 15 CIN 2/3 | HPV-specific T cell responses in 11 patients | 5 CR | Sheets 2003 [91] |
Plasmid encoding HPV16 and HPV18 E6 and E7 CTL epitopes (ZYC101a/Amolimogene) | - | IM | II/III | 127 CIN 2/3 | Antigen-specific T cell responses in 80 patients | 37 CR | Garcia 2004 [92] |
Plasmid encoding mutated HPV16 E7 (E7 detox) fused to Hsp70 from M. tuberculosis (pNGVL4a-Sig/E7(detox)-Hsp70) | - | IM | I | 15 CIN 2/3 | Antigen-specific responses in 8 patients | 3 CR | Trimble 2009 [93] |
pNGVL4a-Sig/E7(detox)-Hsp70 (prime); TA-HPV (boost) | ± Imiquimod | IM (DNA vaccine and TA-HPV) topical (Imiquimod) | I | 12 CIN 3 | Antigen-specific responses in 7 patients | 5 CR | Maldonado 2014 [94] |
Plasmid encoding HPV16 E7(detox) fused to calreticulin (CRT) (pNGVL-4a-CRT/E7(detox)) | - | IM with electroporation in combination with cyclophosphamide | I | 21 HNSCC | ongoing | ongoing | NCT01493154 |
pNGVL-4a-CRT/E7(detox) | - | ID with gene gun; IM; IL | I | 39 CIN 2/3 | ongoing | ongoing | NCT00988559 |
Mixture of two plasmids encoding HPV16 and HPV18 E6 and E7 (VGX-3100) | - | IM with electroporation | I/II | 18 CIN 2/3 | HPV-specific T cell responses in 14 patients | ongoing | NCT01304524 Bagarazzi 2012 [95] |
2.5. Nanoparticles
2.6. Cell-Based Vaccines
2.6.1. DC-Based Vaccines
Antigen/Composition | Adjuvant | Route of Injection | Phase of Study | Patient Population | Immune Response | Clinical Response | References |
---|---|---|---|---|---|---|---|
Autologous DCs loaded with recombinant HPV16 or HPV18 E7 | - | SC | I | 15 grade IV CxCa | HPV-specific T cell responses in 4 patients | NR | Ferrara 2003 [120] |
Autologous DCs loaded with recombinant HPV16 or HPV18 E7 with rhIL-2 | - | SC | I | 4 CxCa refractory to standard treatment | CD4+ T cell responses in 2 patients; antigen-specific CD8+ T cell response in 4 patients | NR | Santin 2006 [121] |
Autologous DCs loaded with recombinant HPV16 or HPV18 E7 with KLH | - | SC | I | 10 grade IB/IIA CxCa | CD4+ T cell response in 10 patients; antigen-specific CD8+ T cell response in 8 patients | Not reported | Santin 2008 [122] |
2.6.2. Tumor Cell-Based Vaccines
2.7. Live Vector-Based Approaches
2.7.1. Viral Vector Vaccines
Antigen/Composition | Adjuvant | Route of Injection | Phase of Study | Patient Population | Immune Response | Clinical Response | References |
---|---|---|---|---|---|---|---|
Recombinant vaccinia virus strain Wyeth encoding a HPV16 and HPV18 E6/E7 fusion protein (TA-HPV) | - | Dermal scarification | I/II | 8 advanced CxCa | HPV-specific antibody responses in 3 patients; HPV-specific CTL response in 1 patient | Not reported | Borysiewicz 1996 [137] |
TA-HPV | - | Dermal scarification | I | 29 grade IB/IIA CxCa | HPV-specific antibody response in 8 patients; HPV-specific CTL responses in 4 patient | Not reported | Kaufmann 2002 [138] |
TA-HPV | - | Dermal scarification | II | 12 VIN | HPV-specific T cell responses in 6 patients | 1 CR 5 PR | Baldwin 2003 [139] |
TA-HPV | - | Dermal scarification | II | 18 VIN 2/3 | HPV-specific immune responses in 13 patients | 8 PR | Davidson 2003 [140] |
Modified vaccinia virus Ankara encoding BPV E2(MVA-E2) | - | Intra-cervical | I/II | 36 CIN 1–3 | HPV-specific CTL responses in all patients | 34 CR | Corona 2004 [141] |
MVA-E2 | - | Intra-cervical | I/II | 34 CIN 2/3 | HPV-specific CTL responses in all patients | 20 CR 11 PR | García-Hernández 2006 [142] |
MVA-E2 | - | Intra-urethral | I/II | 30 male patients with intraurethral flat condyloma | HPV-specific cytotoxic response in all patients | 28 CR | Albarran 2007 [143] |
MVA encoding HPV16 E6 and E7 and rhIL-2 (MVA-HPV-IL2) | - | SC | II | 21 CIN 2/3 | Not reported | 7 CR | Brun 2011 [144] |
MVA-HPV-IL2 | - | SC | II | 209 CIN 2/3 | Not reported | Not reported | NCT01022346 |
2.7.2. Bacterial Vector Vaccines
Antigen/Composition | Adjuvant | Route of Injection | Phase of Study | Patient Population | Immune Response | Clinical Response | References |
---|---|---|---|---|---|---|---|
Live attenuated L. monocytogenes secreting HPV16 E7-LLO fusion protein (ADXS11-001) | - | IV | I | 15 high-grade CxCa | HPV-specific T cell response in 1 patient | 4 CR | Maciag 2009 [164] |
ADXS11-001 | - | IV | II | 67 high-grade CxCa | ongoing | ongoing | NCT01266460 |
ADXS11-001 | - | IV | II | 120 CIN 2/3 | ongoing | ongoing | NCT01116245 |
ADXS11-001 | - | IV | I/II | 36 HPV16+ oropharyngeal carcinomas | ongoing | ongoing | NCT01598792 |
3. Adjuvants and Vaccine Delivery Technologies
4. Outlook
4.1. Combination Therapies
4.2. Novel Materials
4.3. Vaccination Routes
4.4. Advanced Mouse Models
4.5. Systems Biology and Lab-on-a-Chip Techniques
4.6. Immunomonitoring
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scarinci, I.C.; Garcia, F.A.; Kobetz, E.; Partridge, E.E.; Brandt, H.M.; Bell, M.C.; Dignan, M.; Ma, G.X.; Daye, J.L.; Castle, P.E. Cervical cancer prevention: New tools and old barriers. Cancer 2010, 116, 2531–2542. [Google Scholar]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2007, 370, 890–907. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar]
- Van Bogaert, L. Are the currently existing anti-human papillomavirus vaccines appropriate for the developing world? Ann. Med. Health Sci. Res. 2013, 3, 306–312. [Google Scholar]
- Zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer 2002, 2, 342–350. [Google Scholar] [CrossRef]
- De Villiers, E.M. Cross-roads in the classification of papillomaviruses. Virology 2013, 445, 2–10. [Google Scholar] [CrossRef]
- Franceschi, S.; Herrero, R.; Clifford, G.M.; Snijders, P.J.; Arslan, A.; Anh, P.T.; Bosch, F.X.; Ferreccio, C.; Hieu, N.T.; Lazcano-Ponce, E.; et al. Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. Int. J. Cancer 2006, 119, 2677–2684. [Google Scholar] [CrossRef]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar]
- Burk, R.D.; Harari, A.; Chen, Z. Human papillomavirus genome variants. Virology 2013, 445, 232–243. [Google Scholar] [CrossRef]
- International Human Papillomavirus Reference Center. Available online: http://www.hpvcenter.se/html/refclones.html (accessed on 16 May 2014).
- De Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.R.; et al. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 2010, 11, 1048–1056. [Google Scholar] [CrossRef]
- Desruisseau, A.J.; Schmidt-Grimminger, D.; Welty, E. Epidemiology of HPV in HIV-positive and HIV-negative fertile women in Cameroon, West Africa. Infect. Dis. Obstet. Gynecol. 2009. [Google Scholar] [CrossRef]
- Frazer, I.H.; Leggatt, G.R.; Mattarollo, S.R. Prevention and treatment of papillomavirus-related cancers through immunization. Annu. Rev. Immunol. 2011, 29, 111–138. [Google Scholar] [CrossRef]
- Melief, C.J. Treatment of established lesions caused by high-risk human papilloma virus using a synthetic vaccine. J. Immunother. 2012, 35, 215–216. [Google Scholar] [CrossRef]
- Conesa-Zamora, P. Immune responses against virus and tumor in cervical carcinogenesis: Treatment strategies for avoiding the HPV-induced immune escape. Gynecol. Oncol. 2013, 131, 480–488. [Google Scholar] [CrossRef]
- Bellanger, S.; Tan, C.L.; Xue, Y.Z.; Teissier, S.; Thierry, F. Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am. J. Cancer Res. 2011, 1, 373–389. [Google Scholar]
- Xue, Y.; Lim, D.; Zhi, L.; He, P.; Abastado, J.P.; Thierry, F. Loss of HPV16 E2 Protein Expression Without Disruption of the E2 ORF Correlates with Carcinogenic Progression. Open Virol. J. 2012, 6, 163–172. [Google Scholar] [CrossRef]
- Maufort, J.P.; Shai, A.; Pitot, H.C.; Lambert, P.F. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 2010, 70, 2924–2931. [Google Scholar] [CrossRef]
- Ganguly, N. Human papillomavirus-16 E5 protein: Oncogenic role and therapeutic value. Cell Oncol. 2012, 35, 67–76. [Google Scholar] [CrossRef]
- Dyson, N.; Howley, P.M.; Munger, K.; Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989, 243, 934–937. [Google Scholar]
- Werness, B.A.; Levine, A.J.; Howley, P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990, 248, 76–79. [Google Scholar]
- Zur Hausen, H. Papillomaviruses causing cancer: Evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 2000, 92, 690–698. [Google Scholar] [CrossRef]
- Tan, S.; de Vries, E.G.; van der Zee, A.G.; de Jong, S. Anticancer drugs aimed at E6 and E7 activity in HPV-positive cervical cancer. Curr. Cancer Drug Targets 2012, 12, 170–184. [Google Scholar] [CrossRef]
- Jochmus-Kudielka, I.; Schneider, A.; Braun, R.; Kimmig, R.; Koldovsky, U.; Schneweis, K.E.; Seedorf, K.; Gissmann, L. Antibodies against the human papillomavirus type 16 early proteins in human sera: Correlation of anti-E7 reactivity with cervical cancer. J. Natl. Cancer Inst. 1989, 81, 1698–1704. [Google Scholar] [CrossRef]
- Zhou, C.M.; Zhang, G.X.; Ma, X.X. Characterization and evaluation of the immune responses elicited by a novel human papillomavirus (HPV) therapeutic vaccine: HPV 16E7-HBcAg-Hsp65 fusion protein. J. Virol. Methods 2014, 197, 1–6. [Google Scholar] [CrossRef]
- Berraondo, P.; Nouze, C.; Preville, X.; Ladant, D.; Leclerc, C. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res. 2007, 67, 8847–8855. [Google Scholar]
- Huang, C.Y.; Chen, J.J.; Shen, K.Y.; Chang, L.S.; Yeh, Y.C.; Chen, I.H.; Chong, P.; Liu, S.J.; Leng, C.H. Recombinant lipidated HPV E7 induces a Th-1-biased immune response and protective immunity against cervical cancer in a mouse model. PLoS One 2012, 7, e40970. [Google Scholar] [CrossRef]
- Cheng, W.F.; Chang, M.C.; Sun, W.Z.; Jen, Y.W.; Liao, C.W.; Chen, Y.Y.; Chen, C.A. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects. PLoS One 2013, 8, e71216. [Google Scholar]
- De Jong, A.; O’Neill, T.; Khan, A.Y.; Kwappenberg, K.M.; Chisholm, S.E.; Whittle, N.R.; Dobson, J.A.; Jack, L.C.; St Clair Roberts, J.A.; Offringa, R.; et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine 2002, 20, 3456–3464. [Google Scholar] [CrossRef]
- Daayana, S.; Elkord, E.; Winters, U.; Pawlita, M.; Roden, R.; Stern, P.L.; Kitchener, H.C. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer 2010, 102, 1129–1136. [Google Scholar] [CrossRef]
- Smyth, L.J.; van Poelgeest, M.I.; Davidson, E.J.; Kwappenberg, K.M.; Burt, D.; Sehr, P.; Pawlita, M.; Man, S.; Hickling, J.K.; Fiander, A.N.; et al. Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin. Cancer Res. 2004, 10, 2954–2961. [Google Scholar] [CrossRef]
- Davidson, E.J.; Faulkner, R.L.; Sehr, P.; Pawlita, M.; Smyth, L.J.; Burt, D.J.; Tomlinson, A.E.; Hickling, J.; Kitchener, H.C.; Stern, P.L. Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 2004, 22, 2722–2729. [Google Scholar] [CrossRef]
- Fiander, A.N.; Tristram, A.J.; Davidson, E.J.; Tomlinson, A.E.; Man, S.; Baldwin, P.J.; Sterling, J.C.; Kitchener, H.C. Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: Clinical results from a multicenter phase II trial. Int. J. Gynecol. Cancer 2006, 16, 1075–1081. [Google Scholar] [CrossRef]
- Frazer, I.H.; Quinn, M.; Nicklin, J.L.; Tan, J.; Perrin, L.C.; Ng, P.; O’Connor, V.M.; White, O.; Wendt, N.; Martin, J.; et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 2004, 23, 172–181. [Google Scholar] [CrossRef]
- Hallez, S.; Simon, P.; Maudoux, F.; Doyen, J.; Noel, J.C.; Beliard, A.; Capelle, X.; Buxant, F.; Fayt, I.; Lagrost, A.C.; et al. Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia. Cancer Immunol. Immunother. 2004, 53, 642–650. [Google Scholar] [CrossRef]
- Goldstone, S.E.; Palefsky, J.M.; Winnett, M.T.; Neefe, J.R. Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis. Colon Rectum. 2002, 45, 502–507. [Google Scholar] [CrossRef]
- Derkay, C.S.; Smith, R.J.; McClay, J.; van Burik, J.A.; Wiatrak, B.J.; Arnold, J.; Berger, B.; Neefe, J.R. HspE7 treatment of pediatric recurrent respiratory papillomatosis: Final results of an open-label trial. Ann. Otol. Rhinol. Laryngol. 2005, 114, 730–737. [Google Scholar]
- Palefsky, J.M.; Berry, J.M.; Jay, N.; Krogstad, M.; da Costa, M.; Darragh, T.M.; Lee, J.Y. A trial of SGN-00101 (HspE7) to treat high-grade anal intraepithelial neoplasia in HIV-positive individuals. AIDS 2006, 20, 1151–1155. [Google Scholar] [CrossRef]
- Roman, L.D.; Wilczynski, S.; Muderspach, L.I.; Burnett, A.F.; O’Meara, A.; Brinkman, J.A.; Kast, W.M.; Facio, G.; Felix, J.C.; Aldana, M.; et al. A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol. Oncol. 2007, 106, 558–566. [Google Scholar] [CrossRef]
- Einstein, M.H.; Kadish, A.S.; Burk, R.D.; Kim, M.Y.; Wadler, S.; Streicher, H.; Goldberg, G.L.; Runowicz, C.D. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol. Oncol. 2007, 106, 453–460. [Google Scholar] [CrossRef]
- Vandepapeliere, P.; Barrasso, R.; Meijer, C.J.; Walboomers, J.M.; Wettendorff, M.; Stanberry, L.R.; Lacey, C.J. Randomized controlled trial of an adjuvanted human papillomavirus (HPV) type 6 L2E7 vaccine: Infection of external anogenital warts with multiple HPV types and failure of therapeutic vaccination. J. Infect. Dis. 2005, 192, 2099–2107. [Google Scholar] [CrossRef]
- Kanodia, S.; da Silva, D.M.; Kast, W.M. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int. J. Cancer 2008, 122, 247–259. [Google Scholar] [CrossRef]
- Hellner, K.; Munger, K. Human papillomaviruses as therapeutic targets in human cancer. J. Clin. Oncol. 2011, 29, 1785–1794. [Google Scholar] [CrossRef]
- Su, J.H.; Wu, A.; Scotney, E.; Ma, B.; Monie, A.; Hung, C.F.; Wu, T.C. Immunotherapy for cervical cancer: Research status and clinical potential. BioDrugs 2010, 24, 109–129. [Google Scholar] [CrossRef]
- Van der Burg, S.H.; Melief, C.J. Therapeutic vaccination against human papilloma virus induced malignancies. Curr. Opin. Immunol. 2011, 23, 252–257. [Google Scholar] [CrossRef]
- Melief, C.J.; van der Burg, S.H. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer 2008, 8, 351–360. [Google Scholar] [CrossRef]
- Welters, M.J.; Kenter, G.G.; de Vos van Steenwijk, P.J.; Lowik, M.J.; Berends-van der Meer, D.M.; Essahsah, F.; Stynenbosch, L.F.; Vloon, A.P.; Ramwadhdoebe, T.H.; Piersma, S.J.; et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc. Natl. Acad. Sci. USA 2010, 107, 11895–11899. [Google Scholar] [CrossRef]
- Zwaveling, S.; Ferreira Mota, S.C.; Nouta, J.; Johnson, M.; Lipford, G.B.; Offringa, R.; van der Burg, S.H.; Melief, C.J. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 2002, 169, 350–358. [Google Scholar] [CrossRef]
- Kenter, G.G.; Welters, M.J.; Valentijn, A.R.; Lowik, M.J.; Berends-van der Meer, D.M.; Vloon, A.P.; Drijfhout, J.W.; Wafelman, A.R.; Oostendorp, J.; Fleuren, G.J.; et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res. 2008, 14, 169–177. [Google Scholar]
- Welters, M.J.; Kenter, G.G.; Piersma, S.J.; Vloon, A.P.; Lowik, M.J.; Berends-van der Meer, D.M.; Drijfhout, J.W.; Valentijn, A.R.; Wafelman, A.R.; Oostendorp, J.; et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin. Cancer Res. 2008, 14, 178–187. [Google Scholar] [CrossRef]
- Kenter, G.G.; Welters, M.J.; Valentijn, A.R.; Lowik, M.J.; Berends-van der Meer, D.M.; Vloon, A.P.; Essahsah, F.; Fathers, L.M.; Offringa, R.; Drijfhout, J.W.; et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009, 361, 1838–1847. [Google Scholar] [CrossRef]
- De vos van Steenwijk, P.J.; Ramwadhdoebe, T.H.; Lowik, M.J.; van der Minne, C.E.; Berends-van der Meer, D.M.; Fathers, L.M.; Valentijn, A.R.; Oostendorp, J.; Fleuren, G.J.; Hellebrekers, B.W.; et al. A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol. Immunother. 2012, 61, 1485–1492. [Google Scholar] [CrossRef]
- Van Poelgeest, M.I.; Welters, M.J.; van Esch, E.M.; Stynenbosch, L.F.; Kerpershoek, G.; van Persijn van Meerten, E.L.; van den Hende, M.; Lowik, M.J.; Berends-van der Meer, D.M.; Fathers, L.M.; et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J. Transl. Med. 2013, 11. [Google Scholar] [CrossRef]
- De vos van Steenwijk, P.J.; van Poelgeest, M.I.; Ramwadhdoebe, T.H.; Lowik, M.J.; Berends-van der Meer, D.M.; van der Minne, C.E.; Loof, N.M.; Stynenbosch, L.F.; Fathers, L.M.; Valentijn, A.R.; et al. The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: A placebo-controlled phase II study. Cancer Immunol. Immunother. 2014, 63, 147–160. [Google Scholar] [CrossRef]
- Van de Wall, S.; Nijman, H.W.; Daemen, T. HPV-specific immunotherapy: Key role for immunomodulators. Anticancer Agents Med. Chem. 2014, 14, 265–279. [Google Scholar] [CrossRef]
- Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov. 2007, 6, 404–414. [Google Scholar] [CrossRef]
- Kast, W.M.; Brandt, R.M.; Sidney, J.; Drijfhout, J.W.; Kubo, R.T.; Grey, H.M.; Melief, C.J.; Sette, A. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J. Immunol. 1994, 152, 3904–3912. [Google Scholar]
- Rammensee, H.; Bachmann, J.; Emmerich, N.P.; Bachor, O.A.; Stevanovic, S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 1999, 50, 213–219. [Google Scholar] [CrossRef]
- Lundegaard, C.; Lund, O.; Nielsen, M. Prediction of epitopes using neural network based methods. J. Immunol. Methods 2011, 374, 26–34. [Google Scholar] [CrossRef]
- Schubert, B.; Lund, O.; Nielsen, M. Evaluation of peptide selection approaches for epitope-based vaccine design. Tissue Antigens 2013, 82, 243–251. [Google Scholar] [CrossRef]
- Carrasco Pro, S.; Zimic, M.; Nielsen, M. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment. Tissue Antigens 2014, 83, 94–100. [Google Scholar] [CrossRef]
- Jorgensen, K.W.; Rasmussen, M.; Buus, S.; Nielsen, M. NetMHCstab—Predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 2014, 141, 18–26. [Google Scholar] [CrossRef]
- Sette, A.; Sidney, J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 1999, 50, 201–212. [Google Scholar] [CrossRef]
- Macdonald, W.A.; Purcell, A.W.; Mifsud, N.A.; Ely, L.K.; Williams, D.S.; Chang, L.; Gorman, J.J.; Clements, C.S.; Kjer-Nielsen, L.; Koelle, D.M.; et al. A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. J. Exp. Med. 2003, 198, 679–691. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bozic, I.; Kwoh, C.K.; August, J.T.; Brusic, V. Prediction of supertype-specific HLA class I binding peptides using support vector machines. J. Immunol. Methods 2007, 320, 143–154. [Google Scholar] [CrossRef]
- Peters, B.; Bui, H.H.; Frankild, S.; Nielson, M.; Lundegaard, C.; Kostem, E.; Basch, D.; Lamberth, K.; Harndahl, M.; Fleri, W.; et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2006, 2, e65. [Google Scholar] [CrossRef]
- Haen, S.P.; Rammensee, H.G. The repertoire of human tumor-associated epitopes—Identification and selection of antigens and their application in clinical trials. Curr. Opin. Immunol. 2013, 25, 277–283. [Google Scholar] [CrossRef]
- Riemer, A.B.; Keskin, D.B.; Zhang, G.; Handley, M.; Anderson, K.S.; Brusic, V.; Reinhold, B.; Reinherz, E.L. A conserved E7-derived cytotoxic T lymphocyte epitope expressed on human papillomavirus 16-transformed HLA-A2+ epithelial cancers. J. Biol. Chem. 2010, 285, 29608–29622. [Google Scholar]
- Wiesel, M.; Oxenius, A. From crucial to negligible: Functional CD8+ T-cell responses and their dependence on CD4+ T-cell help. Eur. J. Immunol. 2012, 42, 1080–1088. [Google Scholar] [CrossRef]
- Brown, D.M. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell. Immunol. 2010, 262, 89–95. [Google Scholar] [CrossRef]
- Van der Burg, S.H.; Ressing, M.E.; Kwappenberg, K.M.; de Jong, A.; Straathof, K.; de Jong, J.; Geluk, A.; van Meijgaarden, K.E.; Franken, K.L.; Ottenhoff, T.H.; et al. Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: Identification of 3 human leukocyte antigen class II-restricted epitopes. Int. J. Cancer 2001, 91, 612–618. [Google Scholar] [CrossRef]
- Welters, M.J.; van der Logt, P.; van den Eeden, S.J.; Kwappenberg, K.M.; Drijfhout, J.W.; Fleuren, G.J.; Kenter, G.G.; Melief, C.J.; van der Burg, S.H.; Offringa, R. Detection of human papillomavirus type 18 E6 and E7-specific CD4+ T-helper 1 immunity in relation to health versus disease. Int. J. Cancer 2006, 118, 950–956. [Google Scholar] [CrossRef]
- Peng, S.; Trimble, C.; Wu, L.; Pardoll, D.; Roden, R.; Hung, C.F.; Wu, T.C. HLA-DQB1*02-restricted HPV-16 E7 peptide-specific CD4+ T-cell immune responses correlate with regression of HPV-16-associated high-grade squamous intraepithelial lesions. Clin. Cancer Res. 2007, 13, 2479–2487. [Google Scholar] [CrossRef]
- Gallagher, K.M.; Man, S. Identification of HLA-DR1- and HLA-DR15-restricted human papillomavirus type 16 (HPV16) and HPV18 E6 epitopes recognized by CD4+ T cells from healthy young women. J. Gen. Virol. 2007, 88, 1470–1478. [Google Scholar] [CrossRef]
- Wang, X.; Santin, A.D.; Bellone, S.; Gupta, S.; Nakagawa, M. A novel CD4 T-cell epitope described from one of the cervical cancer patients vaccinated with HPV 16 or 18 E7-pulsed dendritic cells. Cancer Immunol. Immunother. 2009, 58, 301–308. [Google Scholar] [CrossRef]
- Nielsen, M.; Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform. 2009, 10. [Google Scholar] [CrossRef]
- Nielsen, M.; Justesen, S.; Lund, O.; Lundegaard, C.; Buus, S. NetMHCIIpan-2.0—Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res. 2010, 6. [Google Scholar] [CrossRef]
- Grabowska, A.K.; Kaufmann, A.M.; Riemer, A.B. Identification of promiscuous HPV16-derived T helper cell epitopes for therapeutic HPV vaccine design. Int. J. Cancer 2014, in press. [Google Scholar]
- Van Driel, W.J.; Ressing, M.E.; Kenter, G.G.; Brandt, R.M.; Krul, E.J.; van Rossum, A.B.; Schuuring, E.; Offringa, R.; Bauknecht, T.; Tamm-Hermelink, A.; et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: Clinical evaluation of a phase I-II trial. Eur. J. Cancer 1999, 35, 946–952. [Google Scholar] [CrossRef]
- Ressing, M.E.; van Driel, W.J.; Brandt, R.M.; Kenter, G.G.; de Jong, J.H.; Bauknecht, T.; Fleuren, G.J.; Hoogerhout, P.; Offringa, R.; Sette, A.; et al. Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J. Immunother. 2000, 23, 255–266. [Google Scholar]
- Steller, M.A.; Gurski, K.J.; Murakami, M.; Daniel, R.W.; Shah, K.V.; Celis, E.; Sette, A.; Trimble, E.L.; Park, R.C.; Marincola, F.M. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin. Cancer Res. 1998, 4, 2103–2109. [Google Scholar]
- Muderspach, L.; Wilczynski, S.; Roman, L.; Bade, L.; Felix, J.; Small, L.A.; Kast, W.M.; Fascio, G.; Marty, V.; Weber, J. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin. Cancer Res. 2000, 6, 3406–3416. [Google Scholar]
- Solares, A.M.; Baladron, I.; Ramos, T.; Valenzuela, C.; Borbon, Z.; Fanjull, S.; Gonzalez, L.; Castillo, D.; Esmir, J.; Granadillo, M.; et al. Safety and Immunogenicity of a Human Papillomavirus Peptide Vaccine (CIGB-228) in Women with High-Grade Cervical Intraepithelial Neoplasia: First-in-Human, Proof-of-Concept Trial. ISRN Obstet. Gynecol. 2011, 2011. [Google Scholar] [CrossRef]
- Daftarian, P.M.; Mansour, M.; Pohajdak, B.; Fuentes-Ortega, A.; Korets-Smith, E.; Macdonald, L.; Weir, G.; Brown, R.G.; Kast, W.M. Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax encapsulated CTL/T helper peptides. J. Transl. Med. 2007, 5. [Google Scholar] [CrossRef]
- Ding, Z.; Ou, R.; Ni, B.; Tang, J.; Xu, Y. Cytolytic activity of the human papillomavirus type 16 E711–20 epitope-specific cytotoxic T lymphocyte is enhanced by heat shock protein 110 in HLA-A*0201 transgenic mice. Clin. Vaccine Immunol. 2013, 20, 1027–1033. [Google Scholar] [CrossRef]
- Gurunathan, S.; Klinman, D.M.; Seder, R.A. DNA vaccines: Immunology, application, and optimization*. Annu. Rev. Immunol. 2000, 18, 927–974. [Google Scholar] [CrossRef]
- Shirota, H.; Klinman, D.M. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev. Vaccines 2014, 13, 299–312. [Google Scholar]
- Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740–745. [Google Scholar] [CrossRef]
- Klinman, D.M.; Takeshita, F.; Kamstrup, S.; Takeshita, S.; Ishii, K.; Ichino, M.; Yamada, H. DNA vaccines: Capacity to induce auto-immunity and tolerance. Dev. Biol. 2000, 104, 45–51. [Google Scholar]
- Klencke, B.; Matijevic, M.; Urban, R.G.; Lathey, J.L.; Hedley, M.L.; Berry, M.; Thatcher, J.; Weinberg, V.; Wilson, J.; Darragh, T.; et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: A Phase I study of ZYC101. Clin. Cancer Res. 2002, 8, 1028–1037. [Google Scholar]
- Sheets, E.E.; Urban, R.G.; Crum, C.P.; Hedley, M.L.; Politch, J.A.; Gold, M.A.; Muderspach, L.I.; Cole, G.A.; Crowley-Nowick, P.A. Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am. J. Obstet. Gynecol. 2003, 188, 916–926. [Google Scholar]
- Garcia, F.; Petry, K.U.; Muderspach, L.; Gold, M.A.; Braly, P.; Crum, C.P.; Magill, M.; Silverman, M.; Urban, R.G.; Hedley, M.L.; et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: A randomized controlled trial. Obstet. Gynecol. 2004, 103, 317–326. [Google Scholar] [CrossRef]
- Trimble, C.L.; Peng, S.; Kos, F.; Gravitt, P.; Viscidi, R.; Sugar, E.; Pardoll, D.; Wu, T.C. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin. Cancer Res. 2009, 15, 361–367. [Google Scholar]
- Maldonado, L.; Teague, J.E.; Morrow, M.P.; Jotova, I.; Wu, T.C.; Wang, C.; Desmarais, C.; Boyer, J.D.; Tycko, B.; Robins, H.S.; et al. Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci. Transl. Med. 2014, 6. [Google Scholar] [CrossRef]
- Bagarazzi, M.L.; Yan, J.; Morrow, M.P.; Shen, X.; Parker, R.L.; Lee, J.C.; Giffear, M.; Pankhong, P.; Khan, A.S.; Broderick, K.E.; et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef]
- Kim, T.W.; Hung, C.F.; Kim, J.W.; Juang, J.; Chen, P.J.; He, L.; Boyd, D.A.; Wu, T.C. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum. Gene Ther. 2004, 15, 167–177. [Google Scholar]
- Diniz, M.O.; Cariri, F.A.; Aps, L.R.; Ferreira, L.C. Enhanced therapeutic effects conferred by an experimental DNA vaccine targeting human papillomavirus-induced tumors. Hum. Gene Ther. 2013, 24, 861–870. [Google Scholar] [CrossRef]
- Kim, M.S.; Sin, J.I. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology 2005, 116, 255–266. [Google Scholar] [CrossRef]
- Kim, T.W.; Hung, C.F.; Ling, M.; Juang, J.; He, L.; Hardwick, J.M.; Kumar, S.; Wu, T.C. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J. Clin. Invest. 2003, 112, 109–117. [Google Scholar] [CrossRef]
- Kim, T.W.; Lee, J.H.; He, L.; Boyd, D.A.; Hardwick, J.M.; Hung, C.F.; Wu, T.C. Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res. 2005, 65, 309–316. [Google Scholar]
- Ohlschlager, P.; Pes, M.; Osen, W.; Durst, M.; Schneider, A.; Gissmann, L.; Kaufmann, A.M. An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response. Vaccine 2006, 24, 2880–2893. [Google Scholar] [CrossRef]
- Babiuk, S.; Baca-Estrada, M.E.; Foldvari, M.; Middleton, D.M.; Rabussay, D.; Widera, G.; Babiuk, L.A. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. 2004, 110, 1–10. [Google Scholar] [CrossRef]
- Sardesai, N.Y.; Weiner, D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429. [Google Scholar] [CrossRef]
- Chuang, C.M.; Hoory, T.; Monie, A.; Wu, A.; Wang, M.C.; Hung, C.F. Enhancing therapeutic HPV DNA vaccine potency through depletion of CD4+CD25+ T regulatory cells. Vaccine 2009, 27, 684–689. [Google Scholar] [CrossRef]
- Li, W.A.; Mooney, D.J. Materials based tumor immunotherapy vaccines. Curr. Opin. Immunol. 2013, 25, 238–245. [Google Scholar] [CrossRef]
- Swartz, M.A.; Hirosue, S.; Hubbell, J.A. Engineering approaches to immunotherapy. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef]
- Moon, J.J.; Huang, B.; Irvine, D.J. Engineering nano- and microparticles to tune immunity. Adv. Mater. 2012, 24, 3724–3746. [Google Scholar] [CrossRef]
- Leleux, J.; Roy, K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: An immunological and materials perspective. Adv. Healthc. Mater. 2013, 2, 72–94. [Google Scholar] [CrossRef]
- Tang, J.; Yin, R.; Tian, Y.; Huang, Z.; Shi, J.; Fu, X.; Wang, L.; Wu, Y.; Hao, F.; Ni, B. A novel self-assembled nanoparticle vaccine with HIV-1 Tat(49–57)/HPV16 E7(49–57) fusion peptide and GM-CSF DNA elicits potent and prolonged CD8+ T cell-dependent anti-tumor immunity in mice. Vaccine 2012, 30, 1071–1082. [Google Scholar]
- Juarez, V.; Pasolli, H.A.; Hellwig, A.; Garbi, N.; Arregui, A.C. Virus-Like particles harboring CCL19, IL-2 and HPV16 E7 elicit protective T cell responses in HLA-A2 transgenic mice. Open Virol. J. 2012, 6, 270–276. [Google Scholar] [CrossRef]
- Petrone, L.; Ammendolia, M.G.; Cesolini, A.; Caimi, S.; Superti, F.; Giorgi, C.; di Bonito, P. Recombinant HPV16 E7 assembled into particles induces an immune response and specific tumour protection administered without adjuvant in an animal model. J. Transl. Med. 2011, 9. [Google Scholar] [CrossRef]
- Song, Y.C.; Cheng, H.Y.; Leng, C.H.; Chiang, S.K.; Lin, C.W.; Chong, P.; Huang, M.H.; Liu, S.J. A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J. Control. Release 2014, 173, 158–165. [Google Scholar] [CrossRef]
- Liu, T.Y.; Hussein, W.M.; Jia, Z.; Ziora, Z.M.; McMillan, N.A.; Monteiro, M.J.; Toth, I.; Skwarczynski, M. Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 2013, 14, 2798–2806. [Google Scholar] [CrossRef][Green Version]
- De Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; van der Vlies, A.J.; Swartz, M.A.; Hubbell, J.A. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci. USA 2013, 110, 19902–19907. [Google Scholar] [CrossRef]
- Ghaffar, K.A.; Giddam, A.K.; Zaman, M.; Skwarczynski, M.; Toth, I. Liposomes as nanovaccine delivery systems. Curr. Top. Med. Chem. 2014, 14, 1194–1208. [Google Scholar]
- Cui, Z.; Huang, L. Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: Therapeutic effect against cervical cancer. Cancer Immunol. Immunother. 2005, 54, 1180–1190. [Google Scholar] [CrossRef]
- Dileo, J.; Banerjee, R.; Whitmore, M.; Nayak, J.V.; Falo, L.D., Jr.; Huang, L. Lipid-protamine-DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol. Ther. 2003, 7, 640–648. [Google Scholar] [CrossRef]
- Mizuuchi, M.; Hirohashi, Y.; Torigoe, T.; Kuroda, T.; Yasuda, K.; Shimizu, Y.; Saito, T.; Sato, N. Novel oligomannose liposome-DNA complex DNA vaccination efficiently evokes anti-HPV E6 and E7 CTL responses. Exp. Mol. Pathol. 2012, 92, 185–190. [Google Scholar] [CrossRef]
- Radford, K.J.; Tullett, K.M.; Lahoud, M.H. Dendritic cells and cancer immunotherapy. Curr. Opin. Immunol. 2014, 27, 26–32. [Google Scholar] [CrossRef]
- Ferrara, A.; Nonn, M.; Sehr, P.; Schreckenberger, C.; Pawlita, M.; Durst, M.; Schneider, A.; Kaufmann, A.M. Dendritic cell-based tumor vaccine for cervical cancer II: Results of a clinical pilot study in 15 individual patients. J. Cancer Res. Clin. Oncol. 2003, 129, 521–530. [Google Scholar] [CrossRef]
- Santin, A.D.; Bellone, S.; Palmieri, M.; Ravaggi, A.; Romani, C.; Tassi, R.; Roman, J.J.; Burnett, A.; Pecorelli, S.; Cannon, M.J. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol. Oncol. 2006, 100, 469–478. [Google Scholar] [CrossRef]
- Santin, A.D.; Bellone, S.; Palmieri, M.; Zanolini, A.; Ravaggi, A.; Siegel, E.R.; Roman, J.J.; Pecorelli, S.; Cannon, M.J. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: A phase I escalating-dose trial. J. Virol. 2008, 82, 1968–1979. [Google Scholar] [CrossRef]
- Tillman, B.W.; Hayes, T.L.; DeGruijl, T.D.; Douglas, J.T.; Curiel, D.T. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 2000, 60, 5456–5463. [Google Scholar]
- Kang, T.H.; Lee, J.H.; Bae, H.C.; Noh, K.H.; Kim, J.H.; Song, C.K.; Shin, B.C.; Hung, C.F.; Wu, T.C.; Park, J.S.; et al. Enhancement of dendritic cell-based vaccine potency by targeting antigen to endosomal/lysosomal compartments. Immunol. Lett. 2006, 106, 126–134. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, T.H.; Noh, K.H.; Bae, H.C.; Ahn, Y.H.; Lee, Y.H.; Choi, E.Y.; Chun, K.H.; Lee, S.J.; Kim, T.W. Blocking the immunosuppressive axis with small interfering RNA targeting interleukin (IL)-10 receptor enhances dendritic cell-based vaccine potency. Clin. Exp. Immunol. 2011, 165, 180–189. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J. Programmed cell death of dendritic cells in immune regulation. Immunol. Rev. 2010, 236, 11–27. [Google Scholar] [CrossRef]
- Bubenik, J.; Simova, J.; Hajkova, R.; Sobota, V.; Jandlova, T.; Smahel, M.; Sobotkova, E.; Vonka, V. Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16. Int. J. Oncol. 1999, 14, 593–597. [Google Scholar]
- Mikyskova, R.; Indrova, M.; Simova, J.; Jandlova, T.; Bieblova, J.; Jinoch, P.; Bubenik, J.; Vonka, V. Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: Cytokine and gene therapy with IL-2 and GM-CSF. Int. J. Oncol. 2004, 24, 161–167. [Google Scholar]
- Hallez, S.; Detremmerie, O.; Giannouli, C.; Thielemans, K.; Gajewski, T.F.; Burny, A.; Leo, O. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity. Int. J. Cancer 1999, 81, 428–437. [Google Scholar] [CrossRef]
- Mikyskova, R.; Indrova, M.; Simova, J.; Bieblova, J.; Bubenik, J.; Reinis, M. Genetically modified tumour vaccines producing IL-12 augment chemotherapy of HPV16-associated tumours with gemcitabine. Oncol. Rep. 2011, 25, 1683–1689. [Google Scholar]
- Chang, E.Y.; Chen, C.H.; Ji, H.; Wang, T.L.; Hung, K.; Lee, B.P.; Huang, A.Y.; Kurman, R.J.; Pardoll, D.M.; Wu, T. Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int. J. Cancer 2000, 86, 725–730. [Google Scholar]
- Bae, S.M.; Kim, Y.W.; Kwak, S.Y.; Kim, Y.W.; Ro, D.Y.; Shin, J.C.; Park, C.H.; Han, S.J.; Oh, C.H.; Kim, C.K.; et al. Photodynamic therapy-generated tumor cell lysates with CpG-oligodeoxynucleotide enhance immunotherapy efficacy in human papillomavirus 16 (E6/E7) immortalized tumor cells. Cancer Sci. 2007, 98, 747–752. [Google Scholar] [CrossRef]
- Rollier, C.S.; Reyes-Sandoval, A.; Cottingham, M.G.; Ewer, K.; Hill, A.V. Viral vectors as vaccine platforms: Deployment in sight. Curr. Opin. Immunol. 2011, 23, 377–382. [Google Scholar] [CrossRef]
- Vannucci, L.; Lai, M.; Chiuppesi, F.; Ceccherini-Nelli, L.; Pistello, M. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol. 2013, 36, 1–22. [Google Scholar]
- Fulginiti, V.A.; Papier, A.; Lane, J.M.; Neff, J.M.; Henderson, D.A. Smallpox vaccination: A review, part II. Adverse events. Clin. Infect. Dis. 2003, 37, 251–271. [Google Scholar] [CrossRef]
- Guo, Z.S.; Bartlett, D.L. Vaccinia as a vector for gene delivery. Expert Opin. Biol. Ther. 2004, 4, 901–917. [Google Scholar] [CrossRef]
- Borysiewicz, L.K.; Fiander, A.; Nimako, M.; Man, S.; Wilkinson, G.W.; Westmoreland, D.; Evans, A.S.; Adams, M.; Stacey, S.N.; Boursnell, M.E.; et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996, 347, 1523–1527. [Google Scholar] [CrossRef]
- Kaufmann, A.M.; Stern, P.L.; Rankin, E.M.; Sommer, H.; Nuessler, V.; Schneider, A.; Adams, M.; Onon, T.S.; Bauknecht, T.; Wagner, U.; et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin. Cancer Res. 2002, 8, 3676–3685. [Google Scholar]
- Baldwin, P.J.; van der Burg, S.H.; Boswell, C.M.; Offringa, R.; Hickling, J.K.; Dobson, J.; Roberts, J.S.; Latimer, J.A.; Moseley, R.P.; Coleman, N.; et al. Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin. Cancer Res. 2003, 9, 5205–5213. [Google Scholar]
- Davidson, E.J.; Boswell, C.M.; Sehr, P.; Pawlita, M.; Tomlinson, A.E.; McVey, R.J.; Dobson, J.; Roberts, J.S.; Hickling, J.; Kitchener, H.C.; et al. Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res. 2003, 63, 6032–6041. [Google Scholar]
- Corona Gutierrez, C.M.; Tinoco, A.; Navarro, T.; Contreras, M.L.; Cortes, R.R.; Calzado, P.; Reyes, L.; Posternak, R.; Morosoli, G.; Verde, M.L.; et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum. Gene Ther. 2004, 15, 421–431. [Google Scholar] [CrossRef]
- Garcia-Hernandez, E.; Gonzalez-Sanchez, J.L.; Andrade-Manzano, A.; Contreras, M.L.; Padilla, S.; Guzman, C.C.; Jimenez, R.; Reyes, L.; Morosoli, G.; Verde, M.L.; et al. Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vaccination with MVA E2 recombinant vaccine. Cancer Gene Ther. 2006, 13, 592–597. [Google Scholar] [CrossRef]
- Albarran, Y.C.A.; de la Garza, A.; Cruz Quiroz, B.J.; Vazquez Zea, E.; Diaz Estrada, I.; Mendez Fuentez, E.; Lopez Contreras, M.; Andrade-Manzano, A.; Padilla, S.; Varela, A.R.; et al. MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma: A phase I/II study. BioDrugs 2007, 21, 47–59. [Google Scholar] [CrossRef]
- Brun, J.L.; Dalstein, V.; Leveque, J.; Mathevet, P.; Raulic, P.; Baldauf, J.J.; Scholl, S.; Huynh, B.; Douvier, S.; Riethmuller, D.; et al. Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am. J. Obstet. Gynecol. 2011, 204, 169 e161–e168. [Google Scholar]
- Benihoud, K.; Yeh, P.; Perricaudet, M. Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 1999, 10, 440–447. [Google Scholar] [CrossRef]
- Lore, K.; Adams, W.C.; Havenga, M.J.; Precopio, M.L.; Holterman, L.; Goudsmit, J.; Koup, R.A. Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J. Immunol. 2007, 179, 1721–1729. [Google Scholar] [CrossRef]
- Lee, D.W.; Anderson, M.E.; Wu, S.; Lee, J.H. Development of an adenoviral vaccine against E6 and E7 oncoproteins to prevent growth of human papillomavirus-positive cancer. Arch. Otolaryngol. Head Neck. Surg. 2008, 134, 1316–1323. [Google Scholar] [CrossRef]
- Quetglas, J.I.; Ruiz-Guillen, M.; Aranda, A.; Casales, E.; Bezunartea, J.; Smerdou, C. Alphavirus vectors for cancer therapy. Virus Res. 2010, 153, 179–196. [Google Scholar] [CrossRef]
- Daemen, T.; Regts, J.; Holtrop, M.; Wilschut, J. Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Ther. 2002, 9, 85–94. [Google Scholar] [CrossRef]
- Daemen, T.; Riezebos-Brilman, A.; Bungener, L.; Regts, J.; Dontje, B.; Wilschut, J. Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7. Vaccine 2003, 21, 1082–1088. [Google Scholar] [CrossRef]
- Daemen, T.; Riezebos-Brilman, A.; Regts, J.; Dontje, B.; van der Zee, A.; Wilschut, J. Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model: Effects of the route of immunization. Antivir. Ther. 2004, 9, 733–742. [Google Scholar]
- Riezebos-Brilman, A.; Regts, J.; Chen, M.; Wilschut, J.; Daemen, T. Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12. Vaccine 2009, 27, 701–707. [Google Scholar] [CrossRef]
- Cheng, W.F.; Hung, C.F.; Chai, C.Y.; Hsu, K.F.; He, L.; Rice, C.M.; Ling, M.; Wu, T.C. Enhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of Mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene. J. Immunol. 2001, 166, 6218–6226. [Google Scholar] [CrossRef]
- Cheng, W.F.; Lee, C.N.; Su, Y.N.; Chai, C.Y.; Chang, M.C.; Polo, J.M.; Hung, C.F.; Wu, T.C.; Hsieh, C.Y.; Chen, C.A. Sindbis virus replicon particles encoding calreticulin linked to a tumor antigen generate long-term tumor-specific immunity. Cancer Gene Ther. 2006, 13, 873–885. [Google Scholar] [CrossRef]
- Cheng, W.F.; Hung, C.H.; Chai, C.Y.; Hsu, K.F.; He, L.; Ling, M.; Wu, T.C. Enhancement of sindbis virus self-replicating RNA vaccine potency by linkage of herpes simplex virus type 1 VP22 protein to antigen. J. Virol. 2001, 75, 2368–2376. [Google Scholar] [CrossRef]
- Cheng, W.F.; Hung, C.F.; Hsu, K.F.; Chai, C.Y.; He, L.; Ling, M.; Slater, L.A.; Roden, R.B.; Wu, T.C. Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments. Hum. Gene Ther. 2001, 12, 235–252. [Google Scholar] [CrossRef]
- Velders, M.P.; McElhiney, S.; Cassetti, M.C.; Eiben, G.L.; Higgins, T.; Kovacs, G.R.; Elmishad, A.G.; Kast, W.M.; Smith, L.R. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res. 2001, 61, 7861–7867. [Google Scholar]
- Cassetti, M.C.; McElhiney, S.P.; Shahabi, V.; Pullen, J.K.; le Poole, I.C.; Eiben, G.L.; Smith, L.R.; Kast, W.M. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 2004, 22, 520–527. [Google Scholar] [CrossRef]
- Liechtenstein, T.; Perez-Janices, N.; Escors, D. Lentiviral vectors for cancer immunotherapy and clinical applications. Cancers 2013, 5, 815–837. [Google Scholar] [CrossRef]
- Philippe, S.; Sarkis, C.; Barkats, M.; Mammeri, H.; Ladroue, C.; Petit, C.; Mallet, J.; Serguera, C. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 17684–17689. [Google Scholar]
- Grasso, F.; Negri, D.R.; Mochi, S.; Rossi, A.; Cesolini, A.; Giovannelli, A.; Chiantore, M.V.; Leone, P.; Giorgi, C.; Cara, A. Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein. Int. J. Cancer 2013, 132, 335–344. [Google Scholar] [CrossRef]
- Paterson, Y.; Maciag, P.C. Listeria-based vaccines for cancer treatment. Curr. Opin. Mol. Ther. 2005, 7, 454–460. [Google Scholar]
- Gunn, G.R.; Zubair, A.; Peters, C.; Pan, Z.K.; Wu, T.C.; Paterson, Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol. 2001, 167, 6471–6479. [Google Scholar] [CrossRef]
- Maciag, P.C.; Radulovic, S.; Rothman, J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: A Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 2009, 27, 3975–3983. [Google Scholar] [CrossRef]
- Dubensky, T.W., Jr.; Reed, S.G. Adjuvants for cancer vaccines. Semin. Immunol. 2010, 22, 155–161. [Google Scholar] [CrossRef]
- Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell. Biol. 2004, 82, 488–496. [Google Scholar] [CrossRef]
- Harris, J.R.; Markl, J. Keyhole limpet hemocyanin (KLH): A biomedical review. Micron 1999, 30, 597–623. [Google Scholar] [CrossRef]
- Tsan, M.F.; Gao, B. Heat shock proteins and immune system. J. Leukoc. Biol. 2009, 85, 905–910. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 2010, 327, 291–295. [Google Scholar] [CrossRef]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition in the innate immune response. Biochem. J. 2009, 420, 1–16. [Google Scholar] [CrossRef]
- Zhu, Q.; Egelston, C.; Vivekanandhan, A.; Uematsu, S.; Akira, S.; Klinman, D.M.; Belyakov, I.M.; Berzofsky, J.A. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines. Proc. Natl. Acad. Sci. USA 2008, 105, 16260–16265. [Google Scholar]
- Adams, S.; O’Neill, D.W.; Nonaka, D.; Hardin, E.; Chiriboga, L.; Siu, K.; Cruz, C.M.; Angiulli, A.; Angiulli, F.; Ritter, E.; et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol 2008, 181, 776–784. [Google Scholar] [CrossRef]
- Duthie, M.S.; Windish, H.P.; Fox, C.B.; Reed, S.G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 2011, 239, 178–196. [Google Scholar] [CrossRef]
- Sun, H.X.; Xie, Y.; Ye, Y.P. ISCOMs and ISCOMATRIX. Vaccine 2009, 27, 4388–4401. [Google Scholar] [CrossRef]
- Schwarz, T.F. Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix. Adv. Ther. 2009, 26, 983–998. [Google Scholar] [CrossRef]
- Baldwin, S.L.; Shaverdian, N.; Goto, Y.; Duthie, M.S.; Raman, V.S.; Evers, T.; Mompoint, F.; Vedvick, T.S.; Bertholet, S.; Coler, R.N.; et al. Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion. Vaccine 2009, 27, 5956–5963. [Google Scholar] [CrossRef]
- Vollmer, J.; Krieg, A.M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev. 2009, 61, 195–204. [Google Scholar]
- Vambutas, A.; DeVoti, J.; Nouri, M.; Drijfhout, J.W.; Lipford, G.B.; Bonagura, V.R.; van der Burg, S.H.; Melief, C.J. Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine 2005, 23, 5271–5280. [Google Scholar] [CrossRef]
- Goldman, B.; DeFrancesco, L. The cancer vaccine roller coaster. Nat. Biotechnol. 2009, 27, 129–139. [Google Scholar] [CrossRef]
- Brichard, V.G.; Lejeune, D. Cancer immunotherapy targeting tumour-specific antigens: Towards a new therapy for minimal residual disease. Expert Opin. Biol. Ther. 2008, 8, 951–968. [Google Scholar] [CrossRef]
- Galluzzi, L.; Senovilla, L.; Zitvogel, L.; Kroemer, G. The secret ally: Immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 2012, 11, 215–233. [Google Scholar] [CrossRef]
- Emens, L.A.; Asquith, J.M.; Leatherman, J.M.; Kobrin, B.J.; Petrik, S.; Laiko, M.; Levi, J.; Daphtary, M.M.; Biedrzycki, B.; Wolff, A.C.; et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: A chemotherapy dose-ranging factorial study of safety and immune activation. J. Clin. Oncol. 2009, 27, 5911–5918. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Callahan, M.K.; Wolchok, J.D. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. 2013, 94, 41–53. [Google Scholar] [CrossRef]
- Perez-Gracia, J.L.; Labiano, S.; Rodriguez-Ruiz, M.E.; Sanmamed, M.F.; Melero, I. Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr. Opin. Immunol. 2014, 27, 89–97. [Google Scholar] [CrossRef]
- Ali, O.A.; Emerich, D.; Dranoff, G.; Mooney, D.J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 2009, 1. [Google Scholar] [CrossRef]
- Ali, O.A.; Huebsch, N.; Cao, L.; Dranoff, G.; Mooney, D.J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 2009, 8, 151–158. [Google Scholar] [CrossRef]
- Ali, O.A.; Verbeke, C.; Johnson, C.; Sands, R.W.; Lewin, S.A.; White, D.; Doherty, E.; Dranoff, G.; Mooney, D.J. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res. 2014, 74, 1670–1681. [Google Scholar] [CrossRef]
- Sandoval, F.; Terme, M.; Nizard, M.; Badoual, C.; Bureau, M.F.; Freyburger, L.; Clement, O.; Marcheteau, E.; Gey, A.; Fraisse, G.; et al. Mucosal imprinting of vaccine-induced CD8+ T cells is crucial to inhibit the growth of mucosal tumors. Sci. Transl. Med. 2013, 5. [Google Scholar] [CrossRef]
- Pascolo, S. HLA class I transgenic mice: Development, utilisation and improvement. Expert Opin. Biol. Ther. 2005, 5, 919–938. [Google Scholar] [CrossRef]
- Pajot, A.; Michel, M.L.; Fazilleau, N.; Pancre, V.; Auriault, C.; Ojcius, D.M.; Lemonnier, F.A.; Lone, Y.C. A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Eur. J. Immunol. 2004, 34, 3060–3069. [Google Scholar] [CrossRef]
- Rappuoli, R.; Mandl, C.W.; Black, S.; de Gregorio, E. Vaccines for the twenty-first century society. Nat. Rev. Immunol. 2011, 11, 865–872. [Google Scholar]
- Finco, O.; Rappuoli, R. Designing vaccines for the twenty-first century society. Front. Immunol. 2014, 5. [Google Scholar] [CrossRef]
- Pulendran, B. Learning immunology from the yellow fever vaccine: Innate immunity to systems vaccinology. Nat. Rev. Immunol. 2009, 9, 741–747. [Google Scholar]
- Pulendran, B.; Li, S.; Nakaya, H.I. Systems vaccinology. Immunity 2010, 33, 516–529. [Google Scholar] [CrossRef]
- Oberg, A.L.; Kennedy, R.B.; Li, P.; Ovsyannikova, I.G.; Poland, G.A. Systems biology approaches to new vaccine development. Curr. Opin. Immunol. 2011, 23, 436–443. [Google Scholar] [CrossRef]
- Trautmann, L.; Sekaly, R.P. Solving vaccine mysteries: A systems biology perspective. Nat. Immunol. 2011, 12, 729–731. [Google Scholar] [CrossRef]
- Germain, R.N.; Meier-Schellersheim, M.; Nita-Lazar, A.; Fraser, I.D. Systems biology in immunology: A computational modeling perspective. Annu. Rev. Immunol. 2011, 29, 527–585. [Google Scholar] [CrossRef]
- Nakaya, H.I.; Wrammert, J.; Lee, E.K.; Racioppi, L.; Marie-Kunze, S.; Haining, W.N.; Means, A.R.; Kasturi, S.P.; Khan, N.; Li, G.M.; et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 2011, 12, 786–795. [Google Scholar] [CrossRef]
- Nakaya, H.I.; Pulendran, B. Systems vaccinology: Its promise and challenge for HIV vaccine development. Curr. Opin. HIV AIDS 2012, 7, 24–31. [Google Scholar] [CrossRef]
- Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009, 10, 116–125. [Google Scholar]
- Gaucher, D.; Therrien, R.; Kettaf, N.; Angermann, B.R.; Boucher, G.; Filali-Mouhim, A.; Moser, J.M.; Mehta, R.S.; Drake, D.R., 3rd; Castro, E.; et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 2008, 205, 3119–3131. [Google Scholar] [CrossRef]
- Bucasas, K.L.; Franco, L.M.; Shaw, C.A.; Bray, M.S.; Wells, J.M.; Nino, D.; Arden, N.; Quarles, J.M.; Couch, R.B.; Belmont, J.W. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J. Infect. Dis. 2011, 203, 921–929. [Google Scholar] [CrossRef]
- Furman, D.; Jojic, V.; Kidd, B.; Shen-Orr, S.; Price, J.; Jarrell, J.; Tse, T.; Huang, H.; Lund, P.; Maecker, H.T.; et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol. Syst. Biol. 2013, 9. [Google Scholar] [CrossRef]
- Obermoser, G.; Presnell, S.; Domico, K.; Xu, H.; Wang, Y.; Anguiano, E.; Thompson-Snipes, L.; Ranganathan, R.; Zeitner, B.; Bjork, A.; et al. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity 2013, 38, 831–844. [Google Scholar] [CrossRef]
- Tan, P.L.; Jacobson, R.M.; Poland, G.A.; Jacobsen, S.J.; Pankratz, V.S. Twin studies of immunogenicity—Determining the genetic contribution to vaccine failure. Vaccine 2001, 19, 2434–2439. [Google Scholar] [CrossRef]
- Franco, L.M.; Bucasas, K.L.; Wells, J.M.; Nino, D.; Wang, X.; Zapata, G.E.; Arden, N.; Renwick, A.; Yu, P.; Quarles, J.M.; et al. Integrative genomic analysis of the human immune response to influenza vaccination. Elife 2013, 2, e00299. [Google Scholar] [CrossRef]
- St Sauver, J.L.; Dhiman, N.; Ovsyannikova, I.G.; Jacobson, R.M.; Vierkant, R.A.; Pankratz, V.S.; Jacobsen, S.J.; Poland, G.A. Extinction of the human leukocyte antigen homozygosity effect after two doses of the measles-mumps-rubella vaccine. Hum. Immunol. 2005, 66, 788–798. [Google Scholar] [CrossRef]
- Mooney, M.; McWeeney, S.; Sekaly, R.P. Systems immunogenetics of vaccines. Semin. Immunol. 2013, 25, 124–129. [Google Scholar] [CrossRef]
- Varadarajan, N.; Kwon, D.S.; Law, K.M.; Ogunniyi, A.O.; Anahtar, M.N.; Richter, J.M.; Walker, B.D.; Love, J.C. Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc. Natl. Acad. Sci. USA 2012, 109, 3885–3890. [Google Scholar]
- Ogi, C.; Aruga, A. Immunological monitoring of anticancer vaccines in clinical trials. Oncoimmunology 2013, 2, e26012. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Khallouf, H.; Grabowska, A.K.; Riemer, A.B. Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines 2014, 2, 422-462. https://doi.org/10.3390/vaccines2020422
Khallouf H, Grabowska AK, Riemer AB. Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines. 2014; 2(2):422-462. https://doi.org/10.3390/vaccines2020422
Chicago/Turabian StyleKhallouf, Hadeel, Agnieszka K. Grabowska, and Angelika B. Riemer. 2014. "Therapeutic Vaccine Strategies against Human Papillomavirus" Vaccines 2, no. 2: 422-462. https://doi.org/10.3390/vaccines2020422