Tuberculosis: Clinical Laboratory Diagnostic Techniques and Future Perspectives
Abstract
1. Background
2. Bacterial Morphological Diagnostic Techniques for Tuberculosis
2.1. Sputum Smear Microscopy Examination Technique
2.2. Bacterial Culture Techniques
3. Molecular Biology Diagnosis Techniques for Tuberculosis
3.1. Nested PCR Technique
3.2. Isothermal Amplification Technique
3.3. Gene Chip Technique
3.4. Emerging Molecular Diagnostic Techniques
4. Immunological Diagnostic Techniques for Tuberculosis
4.1. Traditional Immunological Diagnostic Techniques
4.2. ELISPOT
4.3. IGRA
5. Imaging and Computer-Aided Diagnosis (CAD)
5.1. Traditional Imaging Diagnosis Methods
5.2. Deep Learning-Based CAD
6. Future Perspectives
6.1. Integrated Application of Multimodal Diagnostic Technology
6.2. Personalized Diagnosis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Wang, W.; Zhao, L.; Wu, Y.; Li, X.; Yan, D.; Gao, Q.; Yan, Y.; Zhang, J.; Feng, Y.; et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat. Nanotechnol. 2024, 19, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Global Tuberculosis Report 2024. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024 (accessed on 28 November 2025).
- Dong, B.; He, Z.; Li, Y.; Xu, X.; Wang, C.; Zeng, J. Improved Conventional and New Approaches in the Diagnosis of Tuberculosis. Front. Microbiol. 2022, 13, 924410. [Google Scholar] [CrossRef] [PubMed]
- du Preez, K.; Jenkins, H.E.; Donald, P.R.; Solomons, R.S.; Graham, S.M.; Schaaf, H.S.; Starke, J.R.; Hesseling, A.C.; Seddon, J.A. Tuberculous Meningitis in Children: A Forgotten Public Health Emergency. Front. Neurol. 2022, 13, 751133. [Google Scholar] [CrossRef] [PubMed]
- Togun, T.; Kampmann, B.; Stoker, N.G.; Lipman, M. Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 21. [Google Scholar] [CrossRef]
- Yadav, S.; Rawal, G.; Jeyaraman, M.; Jeyaraman, N. Advancements in Tuberculosis Diagnostics: A Comprehensive Review of the Critical Role and Future Prospects of Xpert MTB/RIF Ultra Technology. Cureus 2024, 16, e57311. [Google Scholar] [CrossRef]
- Fang, W.W.; Kong, X.L.; Yang, J.Y.; Tao, N.N.; Li, Y.M.; Wang, T.T.; Li, Y.Y.; Han, Q.L.; Zhang, Y.Z.; Hu, J.J.; et al. PE/PPE mutations in the transmission of Mycobacterium tuberculosis in China revealed by whole genome sequencing. BMC Microbiol. 2024, 24, 206. [Google Scholar] [CrossRef]
- Wu, S.; Ge, L.; Zheng, S.; Ma, X.; Liang, R.; Zhang, B. A comparative study using Xpert MTB/RIF and culture methods evaluates MassARRAY technology for rapid detection of Mycobacterium tuberculosis and drug resistance. Front. Cell. Infect. Microbiol. 2025, 15, 1539240. [Google Scholar] [CrossRef]
- do Bem Braga, R.C.; Meurer, I.R.; D’Carmo Sodré, M.M.; de Carvalho, L.D.; Marin, L.J.; Silvério, M.S.; Garcia, P.G. Epidemiology of tuberculosis in Minas Gerais, Brazil, between 2013 and 2023 and the impact of the COVID-19 pandemic. Front. Public Health 2025, 13, 1642015. [Google Scholar] [CrossRef]
- Hassan, Y.M.; Mohamed, A.S.; Hassan, Y.M.; El-Sayed, W.M. Recent developments and future directions in point-of-care next-generation CRISPR-based rapid diagnosis. Clin. Exp. Med. 2025, 25, 33. [Google Scholar] [CrossRef]
- Zaporojan, N.; Negrean, R.A.; Hodișan, R.; Zaporojan, C.; Csep, A.; Zaha, D.C. Evolution of Laboratory Diagnosis of Tuberculosis. Clin. Pract. 2024, 14, 388–416. [Google Scholar] [CrossRef]
- Assefa, G.; Desta, K.; Araya, S.; Girma, S.; Mihret, A.; Hailu, T.; Atnafu, A.; Endalafer, N.; Abera, A.; Bekele, S.; et al. Diagnostic efficacy of Light-Emitting Diode (LED) Fluorescence based Microscope for the diagnosis of Tuberculous lymphadenitis. PLoS ONE 2021, 16, e0255146. [Google Scholar] [CrossRef] [PubMed]
- Opperman, C.J.; Singh, S.; Goosen, W.; Cox, H.; Warren, R.; Esmail, A. Incorporating direct molecular diagnostics in management algorithms for nontuberculous mycobacteria: Is it high time? IJID Reg. 2024, 10, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Suwarsono, E.A.; Jauharoh, S.N.A. Added value of bleach for tuberculosis microscopy diagnostic in limited resources setting. Infect. Dis. Rep. 2020, 12, 8719. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Xu, F.; Huang, X.; Wang, J.; Feng, Y.; Huang, J.; Qin, L. Evaluation of Aptamer Fluorescence Microscopy in the Diagnosis of Pulmonary Tuberculosis. Microbiol. Spectr. 2022, 10, e0260221. [Google Scholar] [CrossRef]
- Chen, W.C.; Chang, C.C.; Lin, Y.E. Pulmonary Tuberculosis Diagnosis Using an Intelligent Microscopy Scanner and Image Recognition Model for Improved Acid-Fast Bacilli Detection in Smears. Microorganisms 2024, 12, 1734. [Google Scholar] [CrossRef]
- English, P.; Morrison, M.J.; Mathison, B.; Enrico, E.; Shean, R.; O’Fallon, B.; Rupp, D.; Knight, K.; Rangel, A.; Gilivary, J.; et al. Use of a convolutional neural network for direct detection of acid-fast bacilli from clinical specimens. Microbiol. Spectr. 2025, 13, e0060225. [Google Scholar] [CrossRef]
- Rui, X.H.; Wu, J.; Tu, F.; Zhou, L.; Zhang, Y.Y.; Liu, J. Biphasic Rapid Culture in Differential Diagnosis of Tuberculosis. Altern. Ther. Health Med. 2024, 30, 139–145. [Google Scholar] [PubMed]
- Luo, J.; Yu, X.; Dong, L.; Huo, F.; Ma, Y.; Liang, Q.; Shang, Y.; Huang, H. Biological interpretation of the sporadic sputum smear-positive-culture-negative outcome for patients with tuberculosis undertaking treatments. Front. Public Health 2023, 11, 1064512. [Google Scholar] [CrossRef]
- García-Elorriaga, G.; Carrillo-Montes, M.G.; del Rey-Pineda, G.; González-Bonilla, C.R. Detection of Mycobacterium tuberculosis from respiratory samples with the liquid culture system MB/BacT and verified by PCR. Rev. Investig. Clin. Organo Hosp. Enfermedades Nutr. 2006, 58, 573–579. [Google Scholar] [PubMed]
- March, V.F.A.; Maghradze, N.; McHedlishvili, K.; Avaliani, T.; Aspindzelashvili, R.; Avaliani, Z.; Kipiani, M.; Tukvadze, N.; Jugheli, L.; Bouaouina, S.; et al. Drug-induced differential culturability in diverse strains of Mycobacterium tuberculosis. Sci. Rep. 2025, 15, 3588. [Google Scholar] [CrossRef]
- Diriba, G.; Kebede, A.; Yaregal, Z.; Getahun, M.; Tadesse, M.; Meaza, A.; Dagne, Z.; Moga, S.; Dilebo, J.; Gudena, K.; et al. Performance of Mycobacterium Growth Indicator Tube BACTEC 960 with Lowenstein-Jensen method for diagnosis of Mycobacterium tuberculosis at Ethiopian National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia. BMC Res. Notes 2017, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Satti, L.; Ikram, A.; Abbasi, S.; Malik, N.; Mirza, I.A.; Martin, A. Evaluation of thin-layer agar 7H11 for the isolation of Mycobacterium tuberculosis complex. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2010, 14, 1354–1356. [Google Scholar] [PubMed]
- Idigoras, P.; Beristain, X.; Iturzaeta, A.; Vicente, D.; Pérez-Trallero, E. Comparison of the automated nonradiometric Bactec MGIT 960 system with Löwenstein-Jensen, Coletsos, and Middlebrook 7H11 solid media for recovery of mycobacteria. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2000, 19, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Sorlozano, A.; Soria, I.; Roman, J.; Huertas, P.; Soto, M.J.; Piedrola, G.; Gutierrez, J. Comparative evaluation of three culture methods for the isolation of mycobacteria from clinical samples. J. Microbiol. Biotechnol. 2009, 19, 1259–1264. [Google Scholar] [CrossRef]
- Yadav, R.N.; Verma, A.K.; Kaushik, G. Laboratory Cost Analysis of Conventional and Newer Molecular Tests for Diagnosis of Presumptive Multidrug-Resistant Tuberculosis Patients. J. Glob. Infect. Dis. 2022, 14, 93–98. [Google Scholar] [CrossRef]
- Chang, A.; Mzava, O.; Djomnang, L.K.; Lenz, J.S.; Burnham, P.; Kaplinsky, P.; Andama, A.; Connelly, J.; Bachman, C.M.; Cattamanchi, A.; et al. Metagenomic DNA sequencing to quantify Mycobacterium tuberculosis DNA and diagnose tuberculosis. Sci. Rep. 2022, 12, 16972. [Google Scholar] [CrossRef]
- Balikçi, A.; Erbakan, M.; Babalik, A. Evaluation of mycobacterial microscopy and culture results from clinical samples: A five-year analysis. Tuberk. Toraks 2024, 72, 185–190. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, J.; Zhu, C.; Huang, X.; Lu, J.; Wang, Q.; Chen, Z.; Wang, J.; Zhang, Y.; Gu, D.; et al. Evaluation of a novel biphasic culture medium for recovery of mycobacteria: A multi-center study. PLoS ONE 2012, 7, e36331. [Google Scholar] [CrossRef]
- Salazar, M.P.; da Costa Lima Suassuna Monteiro, J.F.; Veloso Carvalho-Silva, W.H.; Nunes Diniz, G.T.; Werkhauser, R.P.; Lapa Montenegro, L.M.; Schindler, H.C. Development and evaluation of a single-tube nested PCR with colorimetric assay for Mycobacterium tuberculosis detection. BioTechniques 2024, 76, 235–244. [Google Scholar] [CrossRef]
- Kamra, E.; Alam, D.; Singh, V.; Kumar, M.; Chauhan, M.; Mehta, P.K. Diagnosis of urogenital tuberculosis by multiplex-nested PCR targeting mpt64 (Rv1980c) and IS6110: Comparison with multiplex PCR and GeneXpert® MTB/RIF. Lett. Appl. Microbiol. 2022, 75, 857–868. [Google Scholar] [CrossRef]
- Romdhane, E.; Rammeh, S.; Bouaziz, C.M.; Riahi, H.; Ben, M.R.; Ksentini, M.; Chebbi, Y.; Achour, W.; Ferjani, A.; Boutiba, B.B.I.; et al. Performances of single tube nested polymerase chain reaction and GeneXpert ultra on Formalin fixed paraffin embedded tissues in the diagnosis of tuberculous spondylodiscitis. Clin. Rheumatol. 2021, 40, 4317–4323. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, P.; Tiwari, K.; Das, A.; Kumar, D.; Mishra, M.N.; Desikan, P.; Nath, G. Evaluation of highly conserved hsp65-specific nested PCR primers for diagnosing Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2017, 21, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Manabe, T.; Yokokawa, K.; Tsuzaka, K.; Yamada, M.; Miyanaga, R.; Saito, T.; Yamamoto, D.; Matsumura, A.; Suzuki, S.; et al. Cerebral Tuberculoma Diagnosed by Nested Polymerase Chain Reaction of a Formalin-fixed Paraffin-embedded Brain Biopsy Sample. Intern. Med. 2023, 62, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Mor, P.; Dahiya, B.; Parshad, S.; Gulati, P.; Mehta, P.K. Recent updates in diagnosis of abdominal tuberculosis with emphasis on nucleic acid amplification tests. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 33–49. [Google Scholar] [CrossRef]
- Zhang, R.; Ou, X.; Sun, X.; Fan, G.; Zhao, B.; Tian, F.; Li, F.; Shen, X.; Zhao, Y.; Ma, X. Multiplex LNA probe-based RAP assay for rapid and highly sensitive detection of rifampicin-resistant Mycobacterium tuberculosis. Front. Microbiol. 2023, 14, 1141424. [Google Scholar] [CrossRef]
- Han, Z.; Ou, X.; Zhang, R.; Lv, X.; Wang, Y.; Li, H.; Shen, X.; Ma, X.; Tie, Y. A duplex one-step recombinase aided PCR assay for the rapid and sensitive detection of the isoniazid resistance genes katG and inhA in Mycobacterium tuberculosis. Front. Microbiol. 2025, 16, 1548965. [Google Scholar] [CrossRef]
- Kaushal, S.; Dhatwalia, S.K.; Yadav, R.; Sharma, S.; Vaidya, P.C.; Mathew, J.L.; Sethi, S. Comparison of Xpert® MTB/RIF and Xpert® MTB/RIF Ultra in pediatric pulmonary tuberculosis diagnosis. J. Trop. Pediatr. 2025, 71, fmaf034. [Google Scholar] [CrossRef]
- Kay, A.W.; González Fernández, L.; Takwoingi, Y.; Eisenhut, M.; Detjen, A.K.; Steingart, K.R.; Mandalakas, A.M. Xpert MTB/RIF and Xpert MTB/RIF Ultra assays for active tuberculosis and rifampicin resistance in children. Cochrane Database Syst. Rev. 2020, 8, Cd013359. [Google Scholar] [CrossRef]
- Habous, M.; Elimam, M.A.E.; Kumar, R.; Deesi, Z.A.L. Evaluation of GeneXpert Mycobacterium tuberculosis/Rifampin for the detection of Mycobacterium tuberculosis complex and rifampicin resistance in nonrespiratory clinical specimens. Int. J. Mycobacteriology 2019, 8, 132–137. [Google Scholar] [CrossRef]
- Kohli, M.; Schiller, I.; Dendukuri, N.; Yao, M.; Dheda, K.; Denkinger, C.M.; Schumacher, S.G.; Steingart, K.R. Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 2021, 1, Cd012768. [Google Scholar] [CrossRef]
- Zifodya, J.S.; Kreniske, J.S.; Schiller, I.; Kohli, M.; Dendukuri, N.; Schumacher, S.G.; Ochodo, E.A.; Haraka, F.; Zwerling, A.A.; Pai, M.; et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst. Rev. 2021, 2, Cd009593. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, S.; Dong, W.; Jiang, G.; Huo, F.; Ma, Y.; Huang, H.; Wang, G. Diagnostic value of Xpert MTB/RIF Ultra for osteoarticular tuberculosis. J. Infect. 2019, 79, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Toley, B.J. Tuberculosis Diagnosis Using Isothermal Nucleic Acid Amplification in a Paper-and-Plastic Device. Methods Mol. Biol. 2023, 2621, 295–306. [Google Scholar] [CrossRef]
- Guo, Y.L.; Wang, S.S.; Jiang, G.L.; Ban, W.J.; Liu, Y. Evaluation of the diagnostic value of loop-mediated isothermal amplification assays targeting three different Mycobacterium tuberculosis genes. J. Microbiol. Methods 2022, 200, 106547. [Google Scholar] [CrossRef] [PubMed]
- Donkeng-Donfack, V.F.; Ongoulal, S.M.; Djieugoue, Y.J.; Simo, Y.K.; Manga, H.; Tollo, D.A.D.; Belinga, E.M.A.; Mbassa, V.; Abena, J.L.; Eyangoh, S. Tuberculosis-loop-mediated isothermal amplification implementation in Cameroon: Challenges, lessons learned and recommendations. Afr. J. Lab. Med. 2022, 11, 1792. [Google Scholar] [CrossRef]
- Jaroenram, W.; Kampeera, J.; Arunrut, N.; Karuwan, C.; Sappat, A.; Khumwan, P.; Jaitrong, S.; Boonnak, K.; Prammananan, T.; Chaiprasert, A.; et al. Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of Mycobacterium tuberculosis. J. Pharm. Biomed. Anal. 2020, 186, 113333. [Google Scholar] [CrossRef]
- Khan, A.; Kamra, E.; Singh, R.; Sharma, V.; Singh, V.; Mor, P.; Kaushik, S.; Yadav, A.; Mehta, P.K. Diagnosis of osteoarticular tuberculosis: Multi-targeted loop-mediated isothermal amplification assay versus multiplex PCR. Future Microbiol. 2021, 16, 935–948. [Google Scholar]
- Mor, P.; Sheoran, A.; Dahiya, B.; Parshad, S.; Nain, R.; Khan, A.; Malhotra, P.; Gulati, P.; Mehta, P.K. Diagnosis of abdominal tuberculosis by multi-targeted (mpt64 and IS6110) loop-mediated isothermal amplification assay. J. Gastroenterol. Hepatol. 2022, 37, 2264–2271. [Google Scholar] [CrossRef]
- Kamra, E.; Singh, N.; Khan, A.; Singh, J.; Chauhan, M.; Kamal, H.; Mehta, P.K. Diagnosis of genitourinary tuberculosis by loop-mediated isothermal amplification based on SYBR Green I dye reaction. BioTechniques 2022, 73, 47–57. [Google Scholar] [CrossRef]
- Li, B.H.; Zhang, Y.; Tao, S.; Guo, Y.N.; Liu, Q.; Sun, Q.Q. A dry-reagent assay to rapidly detect Mycobacterium tuberculosis using loop-mediated isothermal amplification. Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. Med.] 2023, 57, 1625–1629. [Google Scholar] [CrossRef]
- Liu, C.F.; Song, Y.M.; He, P.; Liu, D.X.; He, W.C.; Li, Y.M.; Zhao, Y.L. Evaluation of Multidrug Resistant Loop-mediated Isothermal Amplification Assay for Detecting the Drug Resistance of Mycobacterium tuberculosis. Biomed. Environ. Sci. BES 2021, 34, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Takarada, Y.; Kodera, T.; Kobayashi, K.; Nakajima, C.; Kawase, M.; Suzuki, Y. Rapid detection of rifampicin-resistant Mycobacterium tuberculosis, based on isothermal DNA amplification and DNA chromatography. J. Microbiol. Methods 2020, 177, 106062. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, Y.; Nagasaki, T.; Muraki, M.; Hanada, S.; Teraguchi, H.; Tohda, Y.; Matsumoto, H. A Case Report of Smear-positive Pulmonary Tuberculosis with False-negative Loop-mediated Isothermal Amplification and T-SPOT.TB Assays. Intern. Med. 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Jirakittiwut, N.; Ratthawongjirakul, P. Advances in Isothermal Amplification for the Diagnosis of Tuberculosis. J. Clin. Lab. Anal. 2025, 39, e70113. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.; Kulkarni, S.; Baghel, N.S. Rapid screening of mutations for second-line-drug-resistant genes in Mycobacterium tuberculosis culture isolates by in-house developed DNA bio-chip. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2025, 44, 2645–2654. [Google Scholar] [CrossRef]
- Huang, M.; Lin, Y.; Chen, X.; Wu, D. The value of gene chip detection of bronchoalveolar lavage fluid in the diagnosis of nontuberculous mycobacterial lung disease. Ann. Palliat. Med. 2021, 10, 6438–6445. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, R.; Gan, M.; Tu, X.; He, Z. Mycobacterial identification on homogenised biopsy facilitates the early diagnosis and treatment of laryngeal tuberculosis. Open Med. 2020, 15, 508–512. [Google Scholar] [CrossRef]
- Ventimiglia, G.; Pesaturo, M.; Malcolm, A.; Petralia, S. A Miniaturized Silicon Lab-on-Chip for Integrated PCR and Hybridization Microarray for High Multiplexing Nucleic Acids Analysis. Biosensors 2022, 12, 563. [Google Scholar] [CrossRef]
- Feng, G.; Han, W.; Shi, J.; Xia, R.; Xu, J. Analysis of the application of a gene chip method for detecting Mycobacterium tuberculosis drug resistance in clinical specimens: A retrospective study. Sci. Rep. 2021, 11, 17951. [Google Scholar] [CrossRef]
- Vasiliauskaitė, L.; Bakuła, Z.; Vasiliauskienė, E.; Bakonytė, D.; Decewicz, P.; Dziurzyński, M.; Proboszcz, M.; Davidavičienė, E.V.; Nakčerienė, B.; Krenke, R.; et al. Detection of multidrug-resistance in Mycobacterium tuberculosis by phenotype- and molecular-based assays. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 81. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Zhang, Y.; Chen, L.; Pan, Z.; Huang, Y.; Li, H. A new method for the detection of Mycobacterium tuberculosis based on the CRISPR/Cas system. BMC Infect. Dis. 2023, 23, 680. [Google Scholar] [CrossRef]
- Gan, T.; Yu, J.; Deng, Z.; He, J. ERA-CRISPR/Cas12a system: A rapid, highly sensitive and specific assay for Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2024, 14, 1454076. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, Y.; Li, H.; Shang, Y.; Zhang, X.; Yuan, J.; Li, S.; Li, C.; Pang, Y. Development and clinical evaluation of a CRISPR/Cas13a-based diagnostic test to detect Mycobacterium tuberculosis in clinical specimens. Front. Microbiol. 2023, 14, 1117085. [Google Scholar] [CrossRef] [PubMed]
- Taufiq, S.; Nagata, M.; Abbas, S.R.; Sode, K. An electrochemical biosensor for the detection of tuberculosis specific DNA with CRISPR-Cas12a and redox-probe modified oligonucleotide. Heliyon 2024, 10, e40754. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Tan, C.; Xiang, B.; Lin, W.; Cheng, B.; Peng, X.; Yang, Y.; Lin, Y. Chain hybridization-based CRISPR-lateral flow assay enables accurate gene visual detection. Anal. Chim. Acta 2023, 1270, 341437. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jiang, D.; Dong, X.; Li, Y.; Wu, X.; Li, R.; Li, F.; Sun, D.; Yu, Y. A label-free orthogonal dual-channel CRISPR-Cas platform for simultaneous detection of Mycobacterium tuberculosis and respiratory syncytial virus. Chem. Commun. 2025, 61, 17914–17917. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Chen, L.; Wang, W.; Yu, F.; Xiong, H. Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance. Epidemiol. Infect. 2022, 150, e22. [Google Scholar] [CrossRef]
- Li, J.; Yang, T.; Hong, C.; Yang, Z.; Wu, L.; Gao, Q.; Yang, H.; Tan, W. Whole-Genome Sequencing for Resistance Level Prediction in Multidrug-Resistant Tuberculosis. Microbiol. Spectr. 2022, 10, e0271421. [Google Scholar] [CrossRef]
- Yordanova, S.; Bachiyska, E.; Tagliani, E.; Baykova, A.; Atanasova, Y.; Spitaleri, A.; Cirillo, D.M. Whole genome sequencing of Bulgarian rifampicin resistant Mycobacterium tuberculosis strains. Folia Medica 2022, 64, 633–640. [Google Scholar] [CrossRef]
- Liu, D.; Huang, F.; Li, Y.; Mao, L.; He, W.; Wu, S.; Xia, H.; He, P.; Zheng, H.; Zhou, Y.; et al. Transmission characteristics in Tuberculosis by WGS: Nationwide cross-sectional surveillance in China. Emerg. Microbes Infect. 2024, 13, 2348505. [Google Scholar] [CrossRef]
- Babiker, H.A.; Al-Jardani, A.; Al-Azri, S.; Petit, R.A., 3rd; Saad, E.; Al-Mahrouqi, S.; Mohamed, R.A.H.; Al-Hamidhi, S.; Balkhair, A.A.; Al Kharusi, N.; et al. Mycobacterium tuberculosis epidemiology in Oman: Whole-genome sequencing uncovers transmission pathways. Microbiol. Spectr. 2023, 11, e0242023. [Google Scholar] [CrossRef]
- Edokimov, K.; Yamada, Y.; Dary, C.; Miow, Q.H.; Hsu, L.Y.; Ong, R.T.; Saphonn, V. Whole-genome sequencing of Mycobacterium tuberculosis from Cambodia. Sci. Rep. 2022, 12, 7693. [Google Scholar] [CrossRef] [PubMed]
- Dohál, M.; Porvazník, I.; Pršo, K.; Rasmussen, E.M.; Solovič, I.; Mokrý, J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis 2020, 123, 101946. [Google Scholar] [CrossRef] [PubMed]
- Anthony, R.M.; Tagliani, E.; Nikolayevskyy, V.; de Zwaan, R.; Mulder, A.; Kamst, M.; Ködmön, C.; van der Werf, M.J.; Cirillo, D.; van Soolingen, D. Experiences from 4 Years of Organization of an External Quality Assessment for Mycobacterium tuberculosis Whole-Genome Sequencing in the European Union/European Economic Area. Microbiol. Spectr. 2023, 11, e0224422. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Dippenaar, A.; Morgan, G.; Grobbelaar, M.; Wells, F.; Caffry, J.; Morais, C.; Gizynski, K.; McGurk, D.; Boada, E.; et al. Microfluidic Capture of Mycobacterium tuberculosis from Clinical Samples for Culture-Free Whole-Genome Sequencing. Microbiol. Spectr. 2023, 11, e0111423. [Google Scholar]
- Brown, A.C. Whole-Genome Sequencing of Mycobacterium tuberculosis Directly from Sputum Samples. Methods Mol. Biol. 2021, 2314, 459–480. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Q.; Liu, Q.; Gan, M.; Takiff, H.E.; Gao, Q. Whole-Genome Sequencing Exhibits Better Diagnostic Performance than Variable-Number Tandem Repeats for Identifying Mixed Infections of Mycobacterium tuberculosis. Microbiol. Spectr. 2023, 11, e0357022. [Google Scholar] [CrossRef]
- Nsubuga, G.; Kennedy, S.; Rani, Y.; Hafiz, Z.; Kim, S.; Ruhwald, M.; Alland, D.; Ellner, J.; Joloba, M.; Dorman, S.E.; et al. Diagnostic accuracy of the NOVA Tuberculosis Total Antibody Rapid test for detection of pulmonary tuberculosis and infection with Mycobacterium tuberculosis. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 31, 100362. [Google Scholar] [CrossRef]
- Dewi, D.; Mertaniasih, N.M.; Soedarsono; Hagino, K.; Yamazaki, T.; Ozeki, Y.; Artama, W.T.; Kobayashi, H.; Inouchi, E.; Yoshida, Y.; et al. Antibodies against native proteins of Mycobacterium tuberculosis can detect pulmonary tuberculosis patients. Sci. Rep. 2023, 13, 12685. [Google Scholar] [CrossRef]
- Farhat, M.; Greenaway, C.; Pai, M.; Menzies, D. False-positive tuberculin skin tests: What is the absolute effect of BCG and non-tuberculous mycobacteria? Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2006, 10, 1192–1204. [Google Scholar] [PubMed]
- Mishra, H.K. The Applications of ELISpot in the Identification and Treatment of Various Forms of Tuberculosis and in the Cancer Immunotherapies. Methods Mol. Biol. 2024, 2768, 51–58. [Google Scholar] [CrossRef]
- Jafari, C.; Olaru, I.D.; Daduna, F.; Lange, C.; Kalsdorf, B. Rapid Diagnosis of Recurrent Paucibacillary Tuberculosis. Pathog. Immun. 2022, 7, 189–202. [Google Scholar] [CrossRef]
- Kim, M.J.; Ha, E.H.; Lee, Y.K.; Park, S.J.; An, C.H.; Park, S.Y.; Kim, S.K. ROP-ESAT6-CFP10 as Tuberculosis-Specific Antigen in Interferon Gamma Release Assay. Ann. Clin. Lab. Sci. 2022, 52, 126–132. [Google Scholar] [PubMed]
- Jian, G.X.; Huang, Y.F. The Diagnostic Value of TSPOT.TB in Children with Tuberculosis. Sichuan Da Xue Xue Bao Yi Xue Ban = J. Sichuan Univ. Med. Sci. Ed. 2020, 51, 92–96. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Li, G.; Liu, S.; Xiao, G.; Bi, J.; Li, F.; Zhang, S.; Ou, M.; He, X.; et al. Elevated antigen-specific IFN-γ responses in bronchoalveolar lavage fluid impervious to clinical comorbidities improve the pulmonary tuberculosis diagnosis. Tuberculosis 2020, 122, 101942. [Google Scholar] [CrossRef] [PubMed]
- Vordermeier, M.; Whelan, A.O. ELISPOT assays to enumerate bovine IFN-γ-secreting cells for the development of novel vaccines against bovine tuberculosis. Methods Mol. Biol. 2012, 792, 219–227. [Google Scholar] [CrossRef]
- Lazarevic, V.; Pawar, S.; Flynn, J. Measuring T-cell function in animal models of tuberculosis by ELISPOT. Methods Mol. Biol. 2005, 302, 179–190. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, H.; Wan, S.; Zhang, Y.; Gao, M.; Liu, X. Mycobacterium tuberculosis latency-associated antigen Rv1733c SLP improves the accuracy of differential diagnosis of active tuberculosis and latent tuberculosis infection. Chin. Med. J. 2022, 135, 63–69. [Google Scholar] [CrossRef]
- Kobashi, Y. Current status and future landscape of diagnosing tuberculosis infection. Respir. Investig. 2023, 61, 563–578. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, X.; Zhang, J.; Sun, Y.; Xiong, Z.; Xiong, Z. Value of gamma interferon enzyme-linked immunospot assay in the diagnosis of peritoneal dialysis-associated tuberculous peritonitis. Int. Urol. Nephrol. 2022, 54, 843–849. [Google Scholar] [CrossRef]
- Zhou, G.; Luo, Q.; Luo, S.; Teng, Z.; Ji, Z.; Yang, J.; Wang, F.; Wen, S.; Ding, Z.; Li, L.; et al. Interferon-γ release assays or tuberculin skin test for detection and management of latent tuberculosis infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2020, 20, 1457–1469. [Google Scholar] [CrossRef]
- Carrère-Kremer, S.; Kolia-Diafouka, P.; Pisoni, A.; Bolloré, K.; Peries, M.; Godreuil, S.; Bourdin, A.; Van de Perre, P.; Tuaillon, E. QuantiFERON-TB Gold Plus Assay in Patients with Latent vs. Active Tuberculosis in a Low Incidence Setting: Level of IFN-γ, CD4/CD8 Responses, and Release of IL-2, IP-10, and MIG. Front. Microbiol. 2022, 13, 825021. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, F.; Shi, H.; Wu, P.; Zhou, Y. Host biomarkers other than interferon gamma in QFT-TB supernatants for identifying active tuberculosis. Tuberculosis 2022, 136, 102256. [Google Scholar] [CrossRef] [PubMed]
- Ontario Health. Interferon-Gamma Release Assay Testing for Latent Tuberculosis Infection: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2024, 24, 1–183. [Google Scholar] [PubMed]
- Abraham, B.; Mohan, J.; John, S.M.; Ramachandran, S. Computer-Aided detection of tuberculosis from X-ray images using CNN and PatternNet classifier. J. X-Ray Sci. Technol. 2023, 31, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Acharya, V.; Dhiman, G.; Prakasha, K.; Bahadur, P.; Choraria, A.; M, S.; J, S.; Prabhu, S.; Chadaga, K.; Viriyasitavat, W.; et al. AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model. Comput. Intell. Neurosci. 2022, 2022, 2399428. [Google Scholar] [CrossRef]
- Ayaz, M.; Shaukat, F.; Raja, G. Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Phys. Eng. Sci. Med. 2021, 44, 183–194. [Google Scholar] [CrossRef]
- Li, Z.; Wu, F.; Hong, F.; Gai, X.; Cao, W.; Zhang, Z.; Yang, T.; Wang, J.; Gao, S.; Peng, C. Computer-Aided Diagnosis of Spinal Tuberculosis From CT Images Based on Deep Learning with Multimodal Feature Fusion. Front. Microbiol. 2022, 13, 823324. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Peng, H.; Liang, W. Mask R-CNN assisted diagnosis of spinal tuberculosis. J. X-Ray Sci. Technol. 2025, 33, 120–133. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.H.; Zhang, S.C.; Liu, L.; Wu, M.; Cheng, M.M. Revisiting Computer-Aided Tuberculosis Diagnosis. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 2316–2332. [Google Scholar] [CrossRef]
- Hwang, E.J.; Jeong, W.G.; David, P.M.; Arentz, M.; Ruhwald, M.; Yoon, S.H. AI for Detection of Tuberculosis: Implications for Global Health. Radiol. Artif. Intell. 2024, 6, e230327. [Google Scholar] [CrossRef]
- Marquez, N.; Carpio, E.J.; Santiago, M.R.; Calderon, J.; Orillaza-Chi, R.; Salanap, S.S.; Stevens, L. Performance of chest X-ray with computer-aided detection powered by deep learning-based artificial intelligence for tuberculosis presumptive identification during case finding in the Philippines. BMC Glob. Public Health 2025, 3, 74. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhang, H.; Li, Z.; Jiang, X.; Shao, J.; Yang, X.; Xiong, J.; Zhou, P.; Zhang, H.; Wang, H.; et al. AI-Powered Chest X-Ray for Diagnosing Pulmonary Tuberculosis in County and Township Health Care Facilities in Yichang: Retrospective, Real-World Study. J. Med. Internet Res. 2025, 27, e83041. [Google Scholar] [CrossRef] [PubMed]
- Sambarey, A.; Smith, K.; Chung, C.; Arora, H.S.; Yang, Z.; Agarwal, P.P.; Chandrasekaran, S. Integrative analysis of multimodal patient data identifies personalized predictors of tuberculosis treatment prognosis. iScience 2024, 27, 109025. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Huang, A.; Zhao, C.; Wen, L.; Song, S.; Lin, Y.; Xu, C.; Qiang, H.; Zhu, Q. Multimodal radiomics integrating deep learning and clinical features for diagnosing multidrug-resistant tuberculosis in HIV/AIDS patients. J. Glob. Antimicrob. Resist. 2025, 43, 134–142. [Google Scholar] [CrossRef]
- Nathan, A.; Beynor, J.I.; Baglaenko, Y.; Suliman, S.; Ishigaki, K.; Asgari, S.; Huang, C.C.; Luo, Y.; Zhang, Z.; Lopez, K.; et al. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat. Immunol. 2021, 22, 781–793. [Google Scholar] [CrossRef]
- Han, D.; Liu, C.; Yang, B.; Yu, F.; Liu, H.; Lou, B.; Shen, Y.; Tang, H.; Zhou, H.; Zheng, S.; et al. Metagenomic fingerprints in bronchoalveolar lavage differentiate pulmonary diseases. NPJ Digit. Med. 2025, 8, 599. [Google Scholar] [CrossRef]
- Shao, J.; Ma, J.; Yu, Y.; Zhang, S.; Wang, W.; Li, W.; Wang, C. A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections. Innovation 2024, 5, 100648. [Google Scholar] [CrossRef]
- Shabalina, I.Y.; Tikhonov, A.M.; Shishova, S.V.; Semenova, L.A.; Sivokozov, I.V. Radial endobronchial ultrasound combined with transbronchial lung cryobiopsy in differential diagnosis of pulmonary infiltrate. Khirurgiia 2021, 7, 84–89. [Google Scholar] [CrossRef]
- Palo, S.; Rawat, S.; Mishra, D.; Mishra, M. Performance of Various Pelvic-Derived Samples for the Diagnosis of Female Genital Tract Tuberculosis by Conventional and Molecular Methods: A Systematic Review and Meta-Analysis. Cureus 2025, 17, e84016. [Google Scholar] [CrossRef]
- Pan, S.W.; Su, W.J.; Chan, Y.J.; Chuang, F.Y.; Feng, J.Y.; Chen, Y.M. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS ONE 2021, 16, e0253879. [Google Scholar] [CrossRef]
- Nkereuwem, E.; Togun, T.; Gomez, M.P.; Székely, R.; Macé, A.; Jobe, D.; Schumacher, S.G.; Kampmann, B.; Denkinger, C.M. Comparing accuracy of lipoarabinomannan urine tests for diagnosis of pulmonary tuberculosis in children from four African countries: A cross-sectional study. Lancet Infect. Dis. 2021, 21, 376–384. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Shen, J.; Cao, H.; Wang, Y.; Hu, S.; Du, Y.; Wang, Y.; Yan, Z.; Xie, L.; et al. Recent progress in tuberculosis diagnosis: Insights into blood-based biomarkers and emerging technologies. Front. Cell. Infect. Microbiol. 2025, 15, 1567592. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, J. From Proteomics to Diagnosis: Biomarker Discovery in Tuberculosis Research. Curr. Med. Chem. 2025, 32, 9527–9532. [Google Scholar] [CrossRef]
- Mozini, M.; Bernardi, F.; Mioto, A.C.; Cassão, V.; Kritski, A.; Alves, D. A Computational Infrastructure for Analyzing Tuberculosis Research Data in Brazil. Stud. Health Technol. Inform. 2023, 305, 558–561. [Google Scholar] [CrossRef]
- Mou, L.; Wiwatpanit, T.; Piriyapol, A.; Chawengkul, P.; Thaipadungpanit, J.; Kulchaitanaroaj, P.; Teerawattananon, Y.; Wang, Y. Early health technology assessment of tongue swab for non-sputum based pulmonary tuberculosis diagnosis in Thailand. Lancet Reg. Health Southeast Asia 2025, 33, 100533. [Google Scholar] [CrossRef]




| Category | Techniques | Advantages | Disadvantages | Sensitivity | Applicable Population |
|---|---|---|---|---|---|
| Bacterial morphological diagnostic techniques | Sputum Smear Microscopy Examination Technique | low cost, easy to operate, suitable for initial screening. | low sensitivity, prone to missed diagnosis | Z-N acid-fast staining 50–60%, fluorescent staining 70–80% | active tuberculosis |
| Bacterial Culture Techniques | the gold standard for diagnosis, high specificity | long duration, easy contamination during the cultivation process | liquid culture about 90%, solid culture 75–80% | active tuberculosis, combined with drug susceptibility tests, can diagnose drug-resistant tuberculosis | |
| Molecular biology diagnosis techniques | Nested PCR, LAMP, and Gene Chip Technique | high sensitivity and specificity, fast detection speed, and the ability to simultaneously identify drug-resistant genes | unable to distinguish between live and dead bacteria, the equipment is expensive, and there are false positives | 80–90%, up to 96% | active tuberculosis and drug-resistant tuberculosis |
| Immunological diagnostic techniques | ELISPOT, IGRA | screen of latent infection of tuberculosis | unable to distinguish between latent infection and active infection | sensitivity varies | latent tuberculosis and active tuberculosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Song, Q.; Liu, J.; Wang, C. Tuberculosis: Clinical Laboratory Diagnostic Techniques and Future Perspectives. Vaccines 2026, 14, 38. https://doi.org/10.3390/vaccines14010038
Song Q, Liu J, Wang C. Tuberculosis: Clinical Laboratory Diagnostic Techniques and Future Perspectives. Vaccines. 2026; 14(1):38. https://doi.org/10.3390/vaccines14010038
Chicago/Turabian StyleSong, Qiuyue, Junlin Liu, and Chunhua Wang. 2026. "Tuberculosis: Clinical Laboratory Diagnostic Techniques and Future Perspectives" Vaccines 14, no. 1: 38. https://doi.org/10.3390/vaccines14010038
APA StyleSong, Q., Liu, J., & Wang, C. (2026). Tuberculosis: Clinical Laboratory Diagnostic Techniques and Future Perspectives. Vaccines, 14(1), 38. https://doi.org/10.3390/vaccines14010038
