Genomic Surveillance Reveals Vaccine-Associated Shifts in Pediatric Invasive Streptococcus pneumoniae in Tunisia
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Isolates and Study Cohort
2.2. Bacterial Culture and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Whole-Genome Sequencing (WGS)
2.5. Pneumococcal Isolate Serotyping
2.6. Ethical Considerations
3. Results
3.1. Clinical Isolates of S. pneumoniae
3.2. Demographic and Epidemiological Features
3.3. Serotype Distribution and Vaccine Coverage
3.4. Antimicrobial Resistance and Multidrug Resistance
3.5. Serotyping Comparison
3.6. Comparative Genomic Analysis and Population Structure
3.7. Vaccine Impact
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharew, B.; Moges, F.; Yismaw, G.; Mihret, A.; Lobie, T.A.; Abebe, W.; Fentaw, S.; Frye, S.; Vestrheim, D.; Tessema, B.; et al. Molecular Epidemiology of Streptococcus pneumoniae Isolates Causing Invasive and Noninvasive Infection in Ethiopia. Sci. Rep. 2024, 14, 21409. [Google Scholar] [CrossRef]
- Yanagihara, K.; Kosai, K.; Mikamo, H.; Mukae, H.; Takesue, Y.; Abe, M.; Taniguchi, K.; Petigara, T.; Kaku, M. Serotype Distribution and Antimicrobial Susceptibility of Streptococcus pneumoniae Associated with Invasive Pneumococcal Disease among Adults in Japan. Int. J. Infect. Dis. 2021, 102, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yi, R.; Jiang, Y.; Xu, S.; Qin, P.; Liang, Z.; Chen, J. Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Causing Invasive Diseases in China: A Meta-Analysis. BMC Pediatr. 2019, 19, 424. [Google Scholar] [CrossRef] [PubMed]
- Bryce, J.; Boschi-Pinto, C.; Shibuya, K.; Black, R.E. WHO Estimates of the Causes of Death in Children. Lancet 2005, 365, 1147–1152. [Google Scholar] [CrossRef]
- Manna, S.; Werren, J.P.; Ortika, B.D.; Bellich, B.; Pell, C.L.; Nikolaou, E.; Gjuroski, I.; Lo, S.; Hinds, J.; Tundev, O.; et al. Streptococcus pneumoniae Serotype 33G: Genetic, Serological, and Structural Analysis of a New Capsule Type. Microbiol. Spectr. 2024, 12, e0357923. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Chiu, C.-H.; Woo, P.C.; Razak Muttalif, A.; Dhar, R.; Choon Kit, L.; Morales, G.; Ozbilgili, E. Pneumococcal Serotype Prevalence and Antibiotic Resistance in Children in South and Southeast Asia, 2012–2024. Hum. Vaccines Immunother. 2024, 20, 2417554. [Google Scholar] [CrossRef]
- Duke, J.A.; Avci, F.Y. Emerging Vaccine Strategies against the Incessant Pneumococcal Disease. npj Vaccines 2023, 8, 122. [Google Scholar] [CrossRef]
- Larsson, M.; Nguyen, H.Q.; Olson, L.; Tran, T.K.; Nguyen, T.V.; Nguyen, C.T.K. Multi-drug Resistance in Streptococcus pneumoniae among Children in Rural Vietnam More than Doubled from 1999 to 2014. Acta Paediatr. 2021, 110, 1916–1923. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global Increase and Geographic Convergence in Antibiotic Consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Nair, G.B.; Niederman, M.S. Updates on Community Acquired Pneumonia Management in the ICU. Pharmacol. Ther. 2021, 217, 107663. [Google Scholar] [CrossRef]
- Smaoui, F.; Ksibi, B.; Ben Ayed, N.; Ktari, S.; Gargouri, O.; Mezghani, S.; Mnif, B.; Mahjoubi, F.; Karray, H.; Hammami, A. Genomic Surveillance of Invasive Streptococcus pneumoniae Strains in South Tunisia during 2012–2022. Microb. Genom. 2025, 11, 001448. [Google Scholar] [CrossRef]
- Ktari, S.; Ben Ayed, N.; Ben Rbeh, I.; Garbi, N.; Maalej, S.; Mnif, B.; Rhimi, F.; Hammami, A. Antibiotic Resistance Pattern, Capsular Types, and Molecular Characterization of Invasive Isolates of Streptococcus pneumoniae in the South of Tunisia from 2012 to 2018. BMC Microbiol. 2023, 23, 36. [Google Scholar] [CrossRef]
- Ben Ayed, N.; Ktari, S.; Jdidi, J.; Gargouri, O.; Smaoui, F.; Hachicha, H.; Ksibi, B.; Mezghani, S.; Mnif, B.; Mahjoubi, F.; et al. Nasopharyngeal Carriage of Streptococcus pneumoniae in Tunisian Healthy Under-Five Children during a Three-Year Survey Period (2020 to 2022). Vaccines 2024, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- WHO; UNICEF. Tunisia: WHO and UNICEF Estimates of Immunization Coverage; WHO: Geneva, Switzerland, 2023; p. 19. [Google Scholar]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Iliaki-Giannakoudaki, E.; Kasimati, A.; Hamilos, G. Antimicrobial Resistance of Streptococcus pneumoniae Clinical Serotypes between 2017 and 2022 in Crete, Greece. Infect. Chemother. 2024, 56, 73. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchiya, M.; Urushibara, N.; Aung, M.S.; Ohashi, N.; Tsutida, S.; Kurashita, K.; Ito, M.; Kobayashi, N. Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Isolated from Children in Japan, 2023. New Microbes New Infect. 2024, 62, 101513. [Google Scholar] [CrossRef]
- Eldholm, V.; Osnes, M.N.; Bjørnstad, M.L.; Straume, D.; Gladstone, R.A. A Genome-Based Survey of Invasive Pneumococci in Norway over Four Decades Reveals Lineage-Specific Responses to Vaccination. Genome Med. 2024, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Slotved, H.-C.; Johannesen, T.B.; Stegger, M.; Fuursted, K. Global Pneumococcal Sequence Cluster Lineage for Invasive Pneumococcal Isolates in Denmark from Summer 2019 to 2023. Sci. Rep. 2025, 15, 24566. [Google Scholar] [CrossRef]
- Pai, R.; Gertz, R.E.; Beall, B. Sequential Multiplex PCR Approach for Determining Capsular Serotypes of Streptococcus pneumoniae Isolates. J. Clin. Microbiol. 2006, 44, 124–131. [Google Scholar] [CrossRef]
- Mhimdi, S.; Meftah, K.; Bouafsoun, A.; Smaoui, H. Accurate Identification of Streptococcus Pseudopneumoniae and Other Mitis Group Streptococci Identified as Atypical Streptococcus pneumoniae in Tunisian Pediatric Population. Acta Microbiol. Et Immunol. Hung. 2023, 70, 325–330. [Google Scholar] [CrossRef]
- Golden, A.R.; Rosenthal, M.; Fultz, B.; Nichol, K.A.; Adam, H.J.; Gilmour, M.W.; Baxter, M.R.; Hoban, D.J.; Karlowsky, J.A.; Zhanel, G.G. Characterization of MDR and XDR Streptococcus pneumoniae in Canada, 2007–13. J. Antimicrob. Chemother. 2015, 70, 2199–2202. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of Core Genomic Relationships among 100,000 Bacterial Pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- WHO. WHO Laboratory Methods for the Diagnosis of Meningitis Caused by Neisseria Meningitidis, Streptococcus pneumoniae, and Haemophilus Influenzae: WHO Manual; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Elberse, K.E.M.; van de Pol, I.; Witteveen, S.; van der Heide, H.G.J.; Schot, C.S.; van Dijk, A.; van der Ende, A.; Schouls, L.M. Population Structure of Invasive Streptococcus pneumoniae in The Netherlands in the Pre-Vaccination Era Assessed by MLVA and Capsular Sequence Typing. PLoS ONE 2011, 6, e20390. [Google Scholar] [CrossRef]
- Podda, M.; Bonechi, S.; Palladino, A.; Scaramuzzino, M.; Brozzi, A.; Roma, G.; Muzzi, A.; Priami, C.; Sîrbu, A.; Bodini, M. Classification of Neisseria Meningitidis Genomes with a Bag-of-Words Approach and Machine Learning. iScience 2024, 27, 109257. [Google Scholar] [CrossRef]
- Charfi, F.; Smaoui, H.; Kechrid, A. Non-Susceptibility Trends and Serotype Coverage by Conjugate Pneumococcal Vaccines in a Tunisian Paediatric Population: A 10-Year Study. Vaccine 2012, 30, G18–G24. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, N.; Gargouri, O.; Mhimdi, S.; Smaoui, F.; Mhiri, E.; Kanzari, L.; Zribi, M.; Maalej Mezghanni, S.; Ktari, S.; Meftah, K.; et al. The Evolution of the Antimicrobial Resistance of Streptococcus pneumoniae in Tunisia: A Multicentric Analysis over Two Decades (2000–2019). Antibiotics 2025, 14, 171. [Google Scholar] [CrossRef]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the False Discovery Rate in Behavior Genetics Research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Waight, P.A.; Andrews, N.J.; Ladhani, S.N.; Sheppard, C.L.; Slack, M.P.E.; Miller, E. Effect of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease in England and Wales 4 Years after Its Introduction: An Observational Cohort Study. Lancet Infect. Dis. 2015, 15, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Eijkelkamp, B.A.; Morey, J.R.; Ween, M.P.; Ong, C.Y.; McEwan, A.G.; Paton, J.C.; McDevitt, C.A. Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae. PLoS ONE 2014, 9, e89427. [Google Scholar] [CrossRef]
- Metz, C.; Schmid, A.; Veldhoen, S. Increase in Complicated Upper Respiratory Tract Infection in Children during the 2022/2023 Winter Season—A Post Coronavirus Disease 2019 Effect? Pediatr. Radiol. 2023, 54, 49–57. [Google Scholar] [CrossRef]
- Silva-Costa, C.; Gomes-Silva, J.; Pinho, M.; Friães, A.; Subtil-Limpo, F.; Ramirez, M.; Melo-Cristino, J. Rebound of Pediatric Invasive Pneumococcal Disease in Portugal after the COVID-19 Pandemic Was Not Associated with Significant Serotype Changes. J. Infect. 2024, 89, 106242. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Yung, F.; Hart, E.; Nguyen, M.N.H.; Shaver, A. Trends in Pneumococcal Meningitis Hospitalizations Following the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in the United States. Vaccine 2017, 35, 6160–6165. [Google Scholar] [CrossRef]
- Kurihara, E.; Takeshita, K.; Tanaka, S.; Takeuchi, N.; Ohkusu, M.; Hishiki, H.; Ishiwada, N. Clinical and Bacteriological Analysis of Pediatric Pneumococcal Meningitis after 13-Valent Pneumococcal Conjugate Vaccine Introduction in Japan. Microbiol. Spectr. 2022, 10, e01822-21. [Google Scholar] [CrossRef]
- Brandileone, M.-C.C.; Almeida, S.C.G.; Minamisava, R.; Andrade, A.-L. Distribution of Invasive Streptococcus pneumoniae Serotypes before and 5 Years after the Introduction of 10-Valent Pneumococcal Conjugate Vaccine in Brazil. Vaccine 2018, 36, 2559–2566. [Google Scholar] [CrossRef]
- Ladhani, S.N.; Collins, S.; Djennad, A.; Sheppard, C.L.; Borrow, R.; Fry, N.K.; Andrews, N.J.; Miller, E.; Ramsay, M.E. Rapid Increase in Non-Vaccine Serotypes Causing Invasive Pneumococcal Disease in England and Wales, 2000-17: A Prospective National Observational Cohort Study. Lancet Infect. Dis. 2018, 18, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.C.; Deloria Knoll, M.; Kagucia, E.W.; Garcia Quesada, M.; Zeger, S.L.; Hetrich, M.K.; Yang, Y.; Herbert, C.; Ogyu, A.; Cohen, A.L.; et al. Global Impact of Ten-Valent and 13-Valent Pneumococcal Conjugate Vaccines on Invasive Pneumococcal Disease in All Ages (the PSERENADE Project): A Global Surveillance Analysis. Lancet Infect. Dis. 2025, 25, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Lekhuleni, C.; Ndlangisa, K.; Gladstone, R.A.; Chochua, S.; Metcalf, B.J.; Li, Y.; Kleynhans, J.; De Gouveia, L.; Hazelhurst, S.; Ferreira, A.D.S.; et al. Impact of Pneumococcal Conjugate Vaccines on Invasive Pneumococcal Disease-Causing Lineages among South African Children. Nat. Commun. 2024, 15, 8401. [Google Scholar] [CrossRef]
- Plainvert, C.; Varon, E.; Viriot, D.; Kempf, M.; Plainvert, C.; Alauzet, C.; Auger, G.; Batah, J.; Brieu, N.; Cattoir, V.; et al. Invasive Pneumococcal Infections in France: Changes from 2009 to 2021 in Antibiotic Resistance and Serotype Distribution of Streptococcus pneumoniae Based on Data from the French Regional Pneumococcal Observatories Network. Infect. Dis. Now 2023, 53, 104632. [Google Scholar] [CrossRef] [PubMed]
- Scelfo, C.; Menzella, F.; Fontana, M.; Ghidoni, G.; Galeone, C.; Facciolongo, N.C. Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. Vaccines 2021, 9, 420. [Google Scholar] [CrossRef]
- Obolski, U.; Swarthout, T.D.; Kalizang’oma, A.; Mwalukomo, T.S.; Chan, J.M.; Weight, C.M.; Brown, C.; Cave, R.; Cornick, J.; Kamng’ona, A.W.; et al. The Metabolic, Virulence and Antimicrobial Resistance Profiles of Colonising Streptococcus pneumoniae Shift after PCV13 Introduction in Urban Malawi. Nat. Commun. 2023, 14, 7477. [Google Scholar] [CrossRef]
- Lo, S.W.; Mellor, K.; Cohen, R.; Alonso, A.R.; Belman, S.; Kumar, N.; Hawkins, P.A.; Gladstone, R.A.; Von Gottberg, A.; Veeraraghavan, B.; et al. Emergence of a Multidrug-Resistant and Virulent Streptococcus pneumoniae Lineage Mediates Serotype Replacement after PCV13: An International Whole-Genome Sequencing Study. Lancet Microbe 2022, 3, e735–e743. [Google Scholar] [CrossRef] [PubMed]
- Cillóniz, C.; Garcia-Vidal, C.; Ceccato, A.; Torres, A. Antimicrobial Resistance Among Streptococcus pneumoniae. In Antimicrobial Resistance in the 21st Century; Fong, I.W., Shlaes, D., Drlica, K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 13–38. ISBN 978-3-319-78537-0. [Google Scholar]
- Ricketson, L.J.; Vanderkooi, O.G.; Wood, M.L.; Leal, J.; Kellner, J.D. Clinical Features and Outcomes of Serotype 19A Invasive Pneumococcal Disease in Calgary, Alberta. Can. J. Infect. Dis. Med. Microbiol. 2014, 25, e71–e75. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H.; Moore, M.R.; et al. The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef] [PubMed]
- Mostowy, R.J.; Croucher, N.J.; De Maio, N.; Chewapreecha, C.; Salter, S.J.; Turner, P.; Aanensen, D.M.; Bentley, S.D.; Didelot, X.; Fraser, C. Frequent Recombination of Pneumococcal Capsule Highlights Future Risks of Emergence of Novel Serotypes. bioRxiv 2017. [Google Scholar] [CrossRef]




| Features | Global Period N = 150 N (%) | Pre-Vaccine Period P1 N = 88 N (%) | Post-Vaccine Period P2 N = 62 N (%) |
|---|---|---|---|
| Age groups * | |||
| [1 day-24 M[ | 90 (60) | 58 (66) | 32 (52) |
| [24 M-60 M[ | 33 (22) | 15 (17) | 18 (29) |
| ≥60 M | 26 (17) | 14 (16) | 12 (19) |
| Gender | |||
| Male | 92 (61) | 52 (59) | 40 (65) |
| female | 58 (39) | 36 (41) | 22 (35) |
| Source of specimen | |||
| CSF | 58 (39) | 40 (46) | 18 (29) |
| Blood | 66 (44) | 32 (36) | 34 (55) |
| Pleural fluid | 14 (9) | 7 (8) | 7 (11) |
| Joint fluid | 12 (8) | 9 (10) | 3 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mhimdi, S.; Meftah, K.; Deghmane, A.-E.; Chelbi, Y.; Bouafsoun, A.; Taha, M.-K.; Smaoui, H. Genomic Surveillance Reveals Vaccine-Associated Shifts in Pediatric Invasive Streptococcus pneumoniae in Tunisia. Vaccines 2026, 14, 27. https://doi.org/10.3390/vaccines14010027
Mhimdi S, Meftah K, Deghmane A-E, Chelbi Y, Bouafsoun A, Taha M-K, Smaoui H. Genomic Surveillance Reveals Vaccine-Associated Shifts in Pediatric Invasive Streptococcus pneumoniae in Tunisia. Vaccines. 2026; 14(1):27. https://doi.org/10.3390/vaccines14010027
Chicago/Turabian StyleMhimdi, Samar, Khaoula Meftah, Ala-Eddine Deghmane, Yasmine Chelbi, Aida Bouafsoun, Muhamed-Kheir Taha, and Hanen Smaoui. 2026. "Genomic Surveillance Reveals Vaccine-Associated Shifts in Pediatric Invasive Streptococcus pneumoniae in Tunisia" Vaccines 14, no. 1: 27. https://doi.org/10.3390/vaccines14010027
APA StyleMhimdi, S., Meftah, K., Deghmane, A.-E., Chelbi, Y., Bouafsoun, A., Taha, M.-K., & Smaoui, H. (2026). Genomic Surveillance Reveals Vaccine-Associated Shifts in Pediatric Invasive Streptococcus pneumoniae in Tunisia. Vaccines, 14(1), 27. https://doi.org/10.3390/vaccines14010027

