Venezuelan Equine Encephalitis Virus: Structural Biology, Vaccines, and Advances in Functional Antibodies
Abstract
1. Introduction
2. Structural Characteristics
2.1. The E1 Glycoprotein
2.2. The E2 Glycoprotein
2.3. The Capsid Protein
2.4. The 6K Protein
3. Vaccine
3.1. Inactivated Vaccines
3.2. Live-Attenuated Vaccines
3.3. Recombinant Vaccines
3.4. Nucleic Acid Vaccines
3.5. Virus-like Particle Vaccines
4. Functional Antibodies
4.1. Humanization and Functional Validation of Murine Antibodies
4.1.1. Humanized 3B4C-4 Antibody (Hy4 IgG)
4.1.2. Humanized 1A4A1 Antibody (hu1A4A1IgG1-2A)
4.1.3. Humanized and Chimeric 1A3B-7 Antibodies (Hu1A3B-7/c1A3B-7)
4.2. Exploration of Novel Epitopes and Antibody Functions
4.2.1. Protective Antibodies Targeting the E3 Glycoprotein (13D4)
4.2.2. Broad-Spectrum, Non-Neutralizing Antibody (CUF37-2a)
4.2.3. Human Neutralizing Antibody F5
4.2.4. Human Polyclonal Antibodies from Transchromosomic Bovines
4.2.5. Vaccine-Elicited Broadly Protective Antibody (SKT05)
4.2.6. Panel of Neutralizing Murine and Human mAbs
4.3. Antibody Engineering, Optimization, and Computational Design
4.3.1. Bivalent Single-Domain Antibodies (sdAbs)
4.3.2. Computational Affinity Maturation of F5 (SNL1-1)
4.3.3. Interplay Between Fc Effector Functions and Binding Potency
4.3.4. Generative AI-Designed sdAbs (a18, a155)
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reed, D.S.; Lind, C.M.; Sullivan, L.J.; Pratt, W.D.; Parker, M.D. Aerosol infection of cynomolgus macaques with enzootic strains of venezuelan equine encephalitis viruses. J. Infect. Dis. 2004, 189, 1013–1017. [Google Scholar] [CrossRef]
- Aguilar, P.V.; Estrada-Franco, J.G.; Navarro-Lopez, R.; Ferro, C.; Haddow, A.D.; Weaver, S.C. Endemic Venezuelan equine encephalitis in the Americas: Hidden under the dengue umbrella. Future Virol. 2011, 6, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Knollmann-Ritschel, B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Forrester, N.L.; Wertheim, J.O.; Dugan, V.G.; Auguste, A.J.; Lin, D.; Adams, A.P.; Chen, R.; Gorchakov, R.; Leal, G.; Estrada-Franco, J.G.; et al. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Neglected Trop. Dis. 2017, 11, e0005693. [Google Scholar] [CrossRef] [PubMed]
- Piche-Ovares, M.; Mendoza, M.P.G.; Moreira-Soto, A.; Fischer, C.; Brünink, S.; Figueroa-Romero, M.D.; Merino-Sarmiento, N.S.; Marcelo-Ñique, A.I.; Málaga-Trillo, E.; Gatty-Nogueira, M.; et al. Venezuelan Equine Encephalitis, Peruvian Amazon, 2020. Emerg. Infect. Dis. 2025, 31, 995–999. [Google Scholar] [CrossRef]
- Barrett, A.D.T.; Weaver, S.C. Arboviruses: Alphaviruses, flaviviruses and bunyaviruses. In Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 520–536. [Google Scholar]
- Zacks, M.A.; Paessler, S. Encephalitic alphaviruses. Vet. Microbiol. 2010, 140, 281–286. [Google Scholar] [CrossRef]
- Woodson, C.M.; Carney, S.K.; Kehn-Hall, K. Neuropathogenesis of encephalitic alphaviruses in non-human primate and mouse models of infection. Pathogens 2025, 14, 193. [Google Scholar] [CrossRef]
- Ortiz, D.I.; Anishchenko, M.; Weaver, S.C. Susceptibility of Psorophora confinnis (diptera: Culicidae) to infection with epizootic (subtype IC) and enzootic (subtype ID) venezuelan equine encephalitis viruses. J. Med. Entomol. 2005, 42, 857–863. [Google Scholar] [CrossRef]
- Salimi, H.; Cain, M.D.; Jiang, X.; Roth, R.A.; Beatty, W.L.; Sun, C.; Klimstra, W.B.; Hou, J.; Klein, R.S. Role of angiotensin II in venezuelan equine encephalitis: Narrative review. Rev. Med. Virol. 2025, 35, e70040. [Google Scholar]
- Salimi, H.; Cain, M.D.; Jiang, X.; Roth, R.A.; Beatty, W.L.; Sun, C.; Klimstra, W.B.; Hou, J.; Klein, R.S. Encephalitic alphaviruses exploit caveola-mediated transcytosis at the blood-brain barrier for central nervous system entry. mBio 2020, 11, 10-1128. [Google Scholar] [CrossRef]
- Boghdeh, N.A.; Risner, K.H.; Barrera, M.D.; Britt, C.M.; Schaffer, D.K.; Alem, F.; Brown, J.A.; Wikswo, J.P.; Narayanan, A. Application of a Human Blood Brain Barrier Organ-on-a-Chip Model to Evaluate Small Molecule Effectiveness against Venezuelan Equine Encephalitis Virus. Viruses 2022, 14, 2799. [Google Scholar] [CrossRef] [PubMed]
- Hollidge, B.S.; Cohen, C.A.; Akuoku Frimpong, J.; Badger, C.V.; Dye, J.M.; Schmaljohn, C.S. Toll-like receptor 4 mediates blood-brain barrier permeability and disease in C3H mice during venezuelan equine encephalitis virus infection. Virulence 2021, 12, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Brooke, C.B.; Whitmore, A.C.; Johnston, R.E. The role of the blood-brain barrier during venezuelan equine encephalitis virus infection. J. Virol. 2011, 85, 10682–10690. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.D.; Salimi, H.; Gong, Y.; Yang, L.; Hamilton, S.L.; Heffernan, J.R.; Hou, J.; Miller, M.J.; Klein, R.S. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J. Neuroimmunol. 2017, 308, 118–130. [Google Scholar] [CrossRef]
- Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009, 4, 837–856. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Zhu, D.; Sun, Z.; Ma, J.; Wang, J.; Kong, L.; Wang, S.; Liu, Z.; Wei, L.; et al. Implication for alphavirus host-cell entry and assembly indicated by a 3.5Å resolution cryo-EM structure. Nat. Commun. 2018, 9, 5326. [Google Scholar] [CrossRef]
- Zhang, R.; Hryc, C.F.; Cong, Y.; Liu, X.; Jakana, J.; Gorchakov, R.; Baker, M.L.; Weaver, S.C.; Chiu, W. 4.4 Å cryo-EM structure of an enveloped alphavirus venezuelan equine encephalitis virus. EMBO J. 2011, 30, 3854–3863. [Google Scholar] [CrossRef]
- Panny, L.; Akrhymuk, I.; Bracci, N.; Woodson, C.; Flor, R.; Elliott, I.; Zhou, W.; Narayanan, A.; Campbell, C.; Kehn-Hall, K. Venezuelan equine encephalitis virus E1 protein interacts with PDIA6 and PDI inhibition reduces alphavirus production. Antivir. Res. 2023, 212, 105560. [Google Scholar] [CrossRef]
- Kielian, M.; Chanel-Vos, C.; Liao, M. Alphavirus entry and membrane fusion. Viruses 2010, 2, 796–825. [Google Scholar] [CrossRef]
- Hickson, S.E.; Hyde, J.L. RNA structures within venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog. 2024, 20, e1012179. [Google Scholar] [CrossRef]
- Ma, B.; Huang, C.; Ma, J.; Xiang, Y.; Zhang, X. Structure of venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature 2021, 598, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, O.; Holmes, A.C.; Kafai, N.M.; Adams, L.J.; Diamond, M.S. Entry receptors—The gateway to alphavirus infection. J. Clin. Investig. 2023, 133, e165307. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, L.; Fontenot, J.; Lin, S.C.; Pinkham, C.; Carey, B.D.; Campbell, C.E.; Kehn-Hall, K. Venezuelan equine encephalitis virus capsid implicated in infection-induced cell cycle delay in vitro. Front. Microbiol. 2018, 9, 3126. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Kim, A.S.; Kafai, N.M.; Earnest, J.T.; Shah, A.P.; Case, J.B.; Basore, K.; Gilliland, T.C.; Sun, C.; Nelson, C.A.; et al. LDLRAD3 is a receptor for venezuelan equine encephalitis virus. Nature 2020, 588, 308–314. [Google Scholar] [CrossRef]
- Basore, K.; Ma, H.; Kafai, N.M.; Mackin, S.; Kim, A.S.; Nelson, C.A.; Diamond, M.S.; Fremont, D.H. Structure of venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature 2021, 598, 672–676. [Google Scholar] [CrossRef]
- Lulla, V.; Kim, D.Y.; Frolova, E.I.; Frolov, I. The amino-terminal domain of alphavirus capsid protein is dispensable for viral particle assembly but regulates RNA encapsidation through cooperative functions of its subdomains. J. Virol. 2013, 87, 12003–12019. [Google Scholar] [CrossRef]
- Blakney, A.K.; McKay, P.F.; Shattock, R.J. Structural Components for Amplification of Positive and Negative Strand VEEV Splitzicons. Front. Mol. Biosci. 2018, 5, 71. [Google Scholar] [CrossRef]
- Guo, T.C.; Johansson, D.X.; Haugland, Ø.; Liljeström, P.; Evensen, Ø. A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS ONE 2014, 9, e100184. [Google Scholar] [CrossRef]
- Firth, A.E.; Chung, B.Y.; Fleeton, M.N.; Atkins, J.F. Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virol. J. 2008, 5, 108. [Google Scholar] [CrossRef]
- Harrington, H.R.; Zimmer, M.H.; Chamness, L.M.; Nash, V.; Penn, W.D.; Miller, T.F., 3rd; Mukhopadhyay, S.; Schlebach, J.P. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. J. Biol. Chem. 2020, 295, 6798–6808. [Google Scholar] [CrossRef]
- Negi, V.; Miller, A.S.; Kuhn, R.J. Advances in viroporin function and structure: A comparative analysis of alphavirus 6K with well-characterized viroporins. Viruses 2025, 17, 868. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Song, S.; Feng, H.; Ma, J.; Wei, W.; Si, F. A roadmap for developing venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int. J. Biol. Macromol. 2023, 245, 125514. [Google Scholar] [CrossRef] [PubMed]
- Pittman, P.R.; Makuch, R.S.; Mangiafico, J.A.; Cannon, T.L.; Gibbs, P.H.; Peters, C.J. Long-term duration of detectable neutralizing antibodies after administration of live-attenuated VEE vaccine and following booster vaccination with inactivated VEE vaccine. Vaccine 1996, 14, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Fine, D.L.; Jenkins, E.; Martin, S.S.; Glass, P.; Parker, M.D.; Grimm, B. A multisystem approach for development and evaluation of inactivated vaccines for venezuelan equine encephalitis virus (VEEV). J. Virol. Methods 2010, 163, 424–432. [Google Scholar] [CrossRef]
- Martin, S.S.; Bakken, R.R.; Lind, C.M.; Garcia, P.; Jenkins, E.; Glass, P.J.; Parker, M.D.; Hart, M.K.; Fine, D.L. Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for venezuelan equine encephalitis virus. Vaccine 2010, 28, 3143–3151. [Google Scholar] [CrossRef]
- Reed, D.S.; Lind, C.M.; Lackemeyer, M.G.; Sullivan, L.J.; Pratt, W.D.; Parker, M.D. Genetically engineered, live, attenuated vaccines protect nonhuman primates against aerosol challenge with a virulent IE strain of venezuelan equine encephalitis virus. Vaccine 2005, 23, 3139–3147. [Google Scholar] [CrossRef]
- Pratt, W.D.; Davis, N.L.; Johnston, R.E.; Smith, J.F. Genetically engineered, live attenuated vaccines for venezuelan equine encephalitis: Testing in animal models. Vaccine 2003, 21, 3854–3862. [Google Scholar] [CrossRef]
- Garmashova, N.; Atasheva, S.; Kang, W.; Weaver, S.C.; Frolova, E.; Frolov, I. Analysis of venezuelan equine encephalitis virus capsid protein function in the inhibition of cellular transcription. J. Virol. 2007, 81, 13552–13565. [Google Scholar] [CrossRef]
- Haines, C.A.; Campos, R.K.; Azar, S.R.; Warmbrod, K.L.; Kautz, T.F.; Forrester, N.L.; Rossi, S.L. Venezuelan equine encephalitis virus V3526 vaccine RNA-dependent RNA polymerase mutants increase vaccine safety through restricted tissue tropism in a murine model. Zoonoses 2022, 2, 2. [Google Scholar] [CrossRef]
- Samsa, M.M.; Dupuy, L.C.; Beard, C.W.; Six, C.M.; Schmaljohn, C.S.; Mason, P.W.; Geall, A.J.; Ulmer, J.B.; Yu, D. Self-amplifying RNA vaccines for venezuelan equine encephalitis virus induce robust protective immunogenicity in mice. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 850–865. [Google Scholar] [CrossRef]
- Paessler, S.; Ni, H.; Petrakova, O.; Fayzulin, R.Z.; Yun, N.; Anishchenko, M.; Weaver, S.C.; Frolov, I. Replication and clearance of venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses. J. Virol. 2006, 80, 2784–2796. [Google Scholar] [CrossRef] [PubMed]
- Guerbois, M.; Volkova, E.; Forrester, N.L.; Rossi, S.L.; Frolov, I.; Weaver, S.C. IRES-driven expression of the capsid protein of the venezuelan equine encephalitis virus TC-83 vaccine strain increases its attenuation and safety. PLoS Neglected Trop. Dis. 2013, 7, e2197. [Google Scholar]
- Williams, A.J.; O’Brien, L.M.; Phillpotts, R.J.; Perkins, S.D. Improved efficacy of a gene optimised adenovirus-based vaccine for venezuelan equine encephalitis virus. Virol. J. 2009, 6, 118. [Google Scholar] [CrossRef] [PubMed]
- Tretyakova, I.; Plante, K.S.; Rossi, S.L.; Lawrence, W.S.; Peel, J.E.; Gudjohnsen, S.; Wang, E.; Mirchandani, D.; Tibbens, A.; Lamichhane, T.N.; et al. Venezuelan equine encephalitis vaccine with rearranged genome resists reversion and protects non-human primates from viremia after aerosol challenge. Vaccine 2020, 38, 3378–3386. [Google Scholar] [CrossRef]
- Suschak, J.J.; Bixler, S.L.; Badger, C.V.; Spik, K.W.; Kwilas, S.A.; Rossi, F.D.; Twenhafel, N.; Adams, M.L.; Shoemaker, C.J.; Spiegel, E.; et al. A DNA vaccine targeting VEE virus delivered by needle-free jet-injection protects macaques against aerosol challenge. npj Vaccines 2022, 7, 46. [Google Scholar] [CrossRef]
- Riemenschneider, J.; Garrison, A.; Geisbert, J.; Jahrling, P.; Hevey, M.; Negley, D.; Schmaljohn, A.; Lee, J.; Hart, M.K.; Vanderzanden, L.; et al. Comparison of individual and combination DNA vaccines for B. anthracis, ebola virus, marburg virus and venezuelan equine encephalitis virus. Vaccine 2003, 21, 4071–4080. [Google Scholar] [CrossRef]
- Dupuy, L.C.; Richards, M.J.; Livingston, B.D.; Hannaman, D.; Schmaljohn, C.S. A multiagent alphavirus DNA vaccine delivered by intramuscular electroporation elicits robust and durable virus-specific immune responses in mice and rabbits and completely protects mice against lethal venezuelan, western, and eastern equine encephalitis virus aerosol challenges. J. Immunol. Res. 2018, 2018, 8521060. [Google Scholar] [CrossRef]
- Suschak, J.J.; Dupuy, L.C.; Shoemaker, C.J.; Six, C.; Kwilas, S.A.; Spik, K.W.; Williams, J.A.; Schmaljohn, C.S. Nanoplasmid vectors Co-expressing innate immune agonists enhance DNA vaccines for venezuelan equine encephalitis virus and ebola virus. Mol. Ther. Methods Clin. Dev. 2020, 17, 810–821. [Google Scholar] [CrossRef]
- Tretyakova, I.; Tibbens, A.; Jokinen, J.D.; Johnson, D.M.; Lukashevich, I.S.; Pushko, P. Novel DNA-launched venezuelan equine encephalitis virus vaccine with rearranged genome. Vaccine 2019, 37, 3317–3325. [Google Scholar] [CrossRef]
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-like particles: Revolutionary platforms for developing vaccines against emerging infectious diseases. Front. Microbiol. 2022, 12, 790121. [Google Scholar] [CrossRef]
- Ko, S.Y.; Akahata, W.; Yang, E.S.; Kong, W.P.; Burke, C.W.; Honnold, S.P.; Nichols, D.K.; Huang, Y.S.; Schieber, G.L.; Carlton, K.; et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. 2019, 11, eaav3113. [Google Scholar] [CrossRef]
- Coates, E.E.; Edupuganti, S.; Chen, G.L. Safety and immunogenicity of a trivalent virus-like particle vaccine against western, eastern, and venezuelan equine encephalitis viruses: A phase 1, open-label, dose-escalation, randomised clinical trial. Lancet Infect. Dis. 2022, 22, 1210–1220. [Google Scholar] [CrossRef]
- Hunt, A.R.; Bowen, R.A.; Frederickson, S.; Maruyama, T.; Roehrig, J.T.; Blair, C.D. Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent venezuelan equine encephalitis virus prevents disease but not infection. Virology 2011, 414, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.G.; Phelps, A.L.; Jager, S.; Chau, D.; Hu, C.C.; O’Brien, L.M.; Perkins, S.D.; Gates, A.J.; Phillpotts, R.J.; Nagata, L.P. A recombinant humanized monoclonal antibody completely protects mice against lethal challenge with venezuelan equine encephalitis virus. Vaccine 2010, 28, 5558–5564. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.G.; Chau, D.; Wu, J.; Jager, S.; Nagata, L.P. Humanization and mammalian expression of a murine monoclonal antibody against venezuelan equine encephalitis virus. Vaccine 2007, 25, 3210–3214. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, S.A.; O’Brien, L.M.; Steven, J.; Muller, M.R.; Lanning, O.J.; Logue, C.H.; D’Elia, R.V.; Phillpotts, R.J.; Perkins, S.D. A humanised murine monoclonal antibody with broad serogroup specificity protects mice from challenge with venezuelan equine encephalitis virus. Antivir. Res. 2011, 90, 1–8. [Google Scholar] [CrossRef]
- Parker, M.D.; Buckley, M.J.; Melanson, V.R.; Glass, P.J.; Norwood, D.; Hart, M.K. Antibody to the E3 glycoprotein protects mice against lethal venezuelan equine encephalitis virus infection. J. Virol. 2010, 84, 12683–12690. [Google Scholar] [CrossRef]
- O’Brien, L.M.; Underwood-Fowler, C.D.; Goodchild, S.A.; Phelps, A.L.; Phillpotts, R.J. Development of a novel monoclonal antibody with reactivity to a wide range of venezuelan equine encephalitis virus strains. Virol. J. 2009, 6, 206. [Google Scholar] [CrossRef]
- Hunt, A.R.; Frederickson, S.; Hinkel, C.; Bowdish, K.S.; Roehrig, J.T. A humanized murine monoclonal antibody protects mice either before or after challenge with virulent venezuelan equine encephalomyelitis virus. J. Gen. Virol. 2006, 87, 2467–2476. [Google Scholar] [CrossRef]
- Gardner, C.L.; Sun, C.; Luke, T.; Raviprakash, K.; Wu, H.; Jiao, J.A.; Sullivan, E.; Reed, D.S.; Ryman, K.D.; Klimstra, W.B. Antibody preparations from human transchromosomic cows exhibit prophylactic and therapeutic efficacy against venezuelan equine encephalitis virus. J. Virol. 2017, 91, 10-1128. [Google Scholar] [CrossRef]
- Sutton, M.S.; Pletnev, S.; Callahan, V.; Ko, S.; Tsybovsky, Y.; Bylund, T.; Casner, R.G.; Cerutti, G.; Gardner, C.L.; Guirguis, V.; et al. Vaccine elicitation and structural basis for antibody protection against alphaviruses. Cell 2023, 186, 2672–2689.e25. [Google Scholar] [CrossRef]
- Kafai, N.M.; Williamson, L.E.; Binshtein, E.; Sukupolvi-Petty, S.; Gardner, C.L.; Liu, J.; Mackin, S.; Kim, A.S.; Kose, N.; Carnahan, R.H.; et al. Neutralizing antibodies protect mice against venezuelan equine encephalitis virus aerosol challenge. J. Exp. Med. 2022, 219, e20212532. [Google Scholar] [CrossRef]
- Liu, J.L.; Zabetakis, D.; Gardner, C.L.; Burke, C.W.; Glass, P.J.; Webb, E.M.; Shriver-Lake, L.C.; Anderson, G.P.; Weger-Lucarelli, J.; Goldman, E.R. Bivalent single domain antibody constructs for effective neutralization of venezuelan equine encephalitis. Sci. Rep. 2022, 12, 700. [Google Scholar] [CrossRef]
- Sumner, C.A.; Schwedler, J.L.; McCoy, K.M.; Holland, J.; Duva, V.; Gelperin, D.; Busygina, V.; Stefan, M.A.; Martinez, D.V.; Juarros, M.A.; et al. Combining computational modeling and experimental library screening to affinity-mature VEEV-neutralizing antibody F5. Protein Sci. A Publ. Protein Soc. 2025, 34, e70043. [Google Scholar] [CrossRef]
- Schwedler, J.L.; Stefan, M.A.; Thatcher, C.E.; McIlroy, P.R.; Sinha, A.; Phillips, A.M.; Sumner, C.A.; Courtney, C.M.; Kim, C.Y.; Weilhammer, D.R.; et al. Therapeutic efficacy of a potent anti-venezuelan equine encephalitis virus antibody is contingent on fc effector function. Mabs 2024, 16, 2297451. [Google Scholar] [CrossRef]
- Callahan, V.; Sutton, M.S.; Gardner, C.L.; Kenchegowda, D.; Dunagan, M.M.; Gosavi, M.; Green, C.; Chen, T.Y.; Prado-Smith, J.; Long, D.; et al. High binding potency overcomes the requirement of fc effector functions for broadly reactive anti-alphavirus antibodies. Sci. Transl. Med. 2025, 17, eadt9853. [Google Scholar] [CrossRef]
- Liu, J.L.; Bayacal, G.C.; Alvarez, J.A.E.; Shriver-Lake, L.C.; Goldman, E.R.; Dean, S.N. Generative deep learning design of single-domain antibodies against venezuelan equine encephalitis virus. Antibodies 2025, 14, 41. [Google Scholar] [CrossRef]


| Antibody Name | Format/Type | Target Protein | Binding Domain | Structural Context |
|---|---|---|---|---|
| 3B4C-4 | Murine IgG | E2 | Domain B (Tip) | Near LDLRAD3 |
| 1A4A-1 | Murine IgG | E2 | Domain B (E2c) | Near LDLRAD3 |
| TRD-14 | Murine IgG | E2 | Domain B (Distal) | Neither |
| F5 (hF5) | Human IgG | E2 | Domain A | Neither |
| SNL1-1 | Human IgG | E2 | Domain A | Neither |
| hVEEV-63 | Human IgG | E2 | Domain B | Near LDLRAD3 |
| SKT05 | Macaque IgG | E1 | Fusion Loop | Near Fusion Loop |
| SKT20 | Macaque IgG | E1 | Fusion Loop | Near Fusion Loop |
| 1A3B-7 | Murine IgG | E2 | E2 | Unknown |
| CUF37-2a | Murine IgG | E2 | E2 | Neither |
| 13D4 | Murine IgG | E3 | E3 Glycoprotein | Neither |
| V3A8 | Llama sdAb | E2 | E2 | Unknown |
| a18 | AI-Designed | E2 | E2 | Unknown |
| TcPAbs | Polyclonal | Various | Polyclonal | Mixed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tang, R.; Wang, D.; Chen, G.; Liu, C.; Zhang, L.; Peng, F.; Yu, J.; Li, X.; Luo, H.; Wen, Y.; et al. Venezuelan Equine Encephalitis Virus: Structural Biology, Vaccines, and Advances in Functional Antibodies. Vaccines 2026, 14, 23. https://doi.org/10.3390/vaccines14010023
Tang R, Wang D, Chen G, Liu C, Zhang L, Peng F, Yu J, Li X, Luo H, Wen Y, et al. Venezuelan Equine Encephalitis Virus: Structural Biology, Vaccines, and Advances in Functional Antibodies. Vaccines. 2026; 14(1):23. https://doi.org/10.3390/vaccines14010023
Chicago/Turabian StyleTang, Rui, Daojing Wang, Guojiang Chen, Chenghua Liu, Liang Zhang, Fenghao Peng, Jijun Yu, Xinying Li, Heng Luo, Yan Wen, and et al. 2026. "Venezuelan Equine Encephalitis Virus: Structural Biology, Vaccines, and Advances in Functional Antibodies" Vaccines 14, no. 1: 23. https://doi.org/10.3390/vaccines14010023
APA StyleTang, R., Wang, D., Chen, G., Liu, C., Zhang, L., Peng, F., Yu, J., Li, X., Luo, H., Wen, Y., & Qiao, C. (2026). Venezuelan Equine Encephalitis Virus: Structural Biology, Vaccines, and Advances in Functional Antibodies. Vaccines, 14(1), 23. https://doi.org/10.3390/vaccines14010023

