Elicitation of Protective Immune Responses Against Influenza Virus Following Intranasal Delivery of Fluzone or Flublok Vaccines
Abstract
1. Introduction
2. Materials and Methods
2.1. Propagation of Influenza Viruses
2.2. Vaccination and Infection of Mice
2.3. Tissue Sampling
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Hemagglutination Inhibition Assay
2.6. Enzyme-Linked Immunospot Assays
2.7. Detection of Viral Lung Titers by Plaque Assay
2.8. Statistical Analysis
3. Results
3.1. Vaccinations and Infections
3.2. Serological Assessment
3.3. B Cell ELISPOTS
3.4. T Cell ELISPOTS
3.5. Influenza Virus Challenge
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Influenza Surveillance. 2025. Available online: https://www.cdc.gov/fluview/overview/fluview-interactive.html (accessed on 30 September 2025).
- WHO. Influenza Key Facts. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 30 September 2025).
- Skehel, J.J.; Wiley, D.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Cowling, B.J.; Perera, R.A.P.M.; Valkenburg, S.A.; Leung, N.H.L.; Iuliano, A.D.; Tam, Y.H.; Wong, J.H.F.; Fang, V.J.; Li, A.P.Y.; So, H.C.; et al. Comparative Immunogenicity of Several Enhanced Influenza Vaccine Options for Older Adults: A Randomized, Controlled Trial. Clin. Infect. Dis. 2020, 71, 1704–1714. [Google Scholar] [CrossRef]
- CDC. Dosage, Administration, and Storage of Influenza Vaccines. 2025. Available online: https://www.cdc.gov/flu/professionals/acip/app/dosage.htm (accessed on 5 May 2025).
- Grohskopf, L.A.; Alyanak, E.; Broder, K.R.; Walter, E.B.; Fry, A.M.; Jernigan, D.B. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2019–2020 Influenza Season. MMWR Recomm. Rep. 2019, 68, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.B.; Kirchenbaum, G.A.; Sautto, G.A.; Clutter, E.F.; Ross, T.M. Impaired memory B-cell recall responses in the elderly following recurrent influenza vaccination. PLoS ONE 2021, 16, e0254421. [Google Scholar] [CrossRef]
- Cox, M.M.; Izikson, R.; Post, P.; Dunkle, L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther. Adv. Vaccines 2015, 3, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Izikson, R.; Leffell, D.J.; Bock, S.A.; Patriarca, P.A.; Post, P.; Dunkle, L.M.; Cox, M.M. Randomized comparison of the safety of Flublok((R)) versus licensed inactivated influenza vaccine in healthy, medically stable adults ≥ 50 years of age. Vaccine 2015, 33, 6622–6628. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Flublok. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/flublok#:~:text=Flublok-,Vaccines,years%20of%20age%20and%20older (accessed on 14 October 2019).
- Siram, K.; Lathrop, S.K.; Abdelwahab, W.M.; Tee, R.; Davison, C.J.; Partlow, H.A.; Evans, J.T.; Burkhart, D.J. Co-Delivery of Novel Synthetic TLR4 and TLR7/8 Ligands Adsorbed to Aluminum Salts Promotes Th1-Mediated Immunity against Poorly Immunogenic SARS-CoV-2 RBD. Vaccines 2023, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Ebensen, T.; Libanova, R.; Schulze, K.; Yevsa, T.; Morr, M.; Guzman, C.A. Bis-(3’,5’)-cyclic dimeric adenosine monophosphate: Strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 2011, 29, 5210–5220. [Google Scholar] [CrossRef]
- Ebensen, T.; Debarry, J.; Pedersen, G.K.; Blazejewska, P.; Weissmann, S.; Schulze, K.; McCullough, K.C.; Cox, R.J.; Guzman, C.A. Mucosal Administration of Cycle-Di-Nucleotide-Adjuvanted Virosomes Efficiently Induces Protection against Influenza H5N1 in Mice. Front. Immunol. 2017, 8, 1223. [Google Scholar] [CrossRef]
- Monto, A.S.; Maassab, H. Ether treatment of type B influenza virus antigen for the hemagglutination inhibition test. J. Clin. Microbiol. 1981, 13, 54–57. [Google Scholar] [CrossRef]
- Uno, N.; Ross, T.M. Multivalent next generation influenza virus vaccines protect against seasonal and pre-pandemic viruses. Sci. Rep. 2024, 14, 1440. [Google Scholar] [CrossRef] [PubMed]
- Uno, N.; Ebensen, T.; Guzman, C.A.; Ross, T.M. Intranasal administration of octavalent next-generation influenza vaccine elicits protective immune responses against seasonal and pre-pandemic viruses. J. Virol. 2024, 98, e0035424. [Google Scholar] [CrossRef]
- World Health Organization. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; World Health Organization: Geneva, Switzerland, 2011.
- Suryadevara, M.; Domachowske, J.B. Quadrivalent influenza vaccine in the United States. Hum. Vaccin. Immunother. 2014, 10, 596–599. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Centers for Disease Control and Prevention. Influenza Vaccines—United States, 2019–2020 Influenza Season. 2019. Available online: https://www.cdc.gov/fluvaxview/coverage-by-season/vaccination-2019-2020.html (accessed on 27 January 2020).
- Bretscher, P.A. On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand. J. Immunol. 2014, 79, 361–376. [Google Scholar] [CrossRef]
- Verma, S.K.; Ana-Sosa-Batiz, F.; Timis, J.; Shafee, N.; Maule, E.; Pinto, P.B.A.; Conner, C.; Valentine, K.M.; Cowley, D.O.; Miller, R.; et al. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024, 108, 105361. [Google Scholar] [CrossRef] [PubMed]
- Ebensen, T.; Delandre, S.; Prochnow, B.; Guzman, C.A.; Schulze, K. The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization. Front. Cell Infect. Microbiol. 2019, 9, 31. [Google Scholar] [CrossRef]
- Lirussi, D.; Ebensen, T.; Schulze, K.; Reinhard, E.; Trittel, S.; Riese, P.; Prochnow, B.; Guzman, C.A. Rapid In Vivo Assessment of Adjuvant’s Cytotoxic T Lymphocytes Generation Capabilities for Vaccine Development. J. Vis. Exp. 2018, 136, 57401. [Google Scholar] [CrossRef]
- Skrnjug, I.; Guzman, C.A.; Rueckert, C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE 2014, 9, e110150. [Google Scholar] [CrossRef]
- Skrnjug, I.; Rueckert, C.; Libanova, R.; Lienenklaus, S.; Weiss, S.; Guzman, C.A. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE 2014, 9, e95728. [Google Scholar] [CrossRef]
- Volckmar, J.; Knop, L.; Stegemann-Koniszewski, S.; Schulze, K.; Ebensen, T.; Guzman, C.A.; Bruder, D. The STING activator c-di-AMP exerts superior adjuvant properties than the formulation poly(I:C)/CpG after subcutaneous vaccination with soluble protein antigen or DEC-205-mediated antigen targeting to dendritic cells. Vaccine 2019, 37, 4963–4974. [Google Scholar] [CrossRef]
- Yan, H.; Chen, W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines 2021, 9, 917. [Google Scholar] [CrossRef]
- Goff, P.H.; Hayashi, T.; He, W.; Yao, S.; Cottam, H.B.; Tan, G.S.; Crain, B.; Krammer, F.; Messer, K.; Pu, M.; et al. Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, M.; Ye, Q.; Gao, F.; Xu, W.; Li, B.; Wang, Q.; Zhao, L.; Tan, W.S. A synthetic TLR4 agonist significantly increases humoral immune responses and the protective ability of an MDCK-cell-derived inactivated H7N9 vaccine in mice. Arch. Virol. 2024, 169, 163. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. Recent Insights into the Molecular Mechanisms of the Toll-like Receptor Response to Influenza Virus Infection. Int. J. Mol. Sci. 2024, 25, 5909. [Google Scholar] [CrossRef] [PubMed]
- Napolitani, G.; Rinaldi, A.; Bertoni, F.; Sallusto, F.; Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 2005, 6, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Cybulski, V.; Whitacre, M.; Bess, L.S.; Livesay, M.T.; Walsh, L.; Burkhart, D.; Bazin, H.G.; Evans, J.T. Novel Lipidated Imidazoquinoline TLR7/8 Adjuvants Elicit Influenza-Specific Th1 Immune Responses and Protect Against Heterologous H3N2 Influenza Challenge in Mice. Front. Immunol. 2020, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- Maroof, A.; Yorgensen, Y.M.; Li, Y.; Evans, J.T. Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog. 2014, 10, e1003875. [Google Scholar] [CrossRef]
- Reis, L.R.; Ross, T.M. Integrated analysis of humoral and memory B-cell responses reveals distinct immune landscapes shaped by Influenza vaccine platforms. NPJ Vaccines 2025. [Google Scholar] [CrossRef] [PubMed]
- Short, K.K.; Lathrop, S.K.; Davison, C.J.; Partlow, H.A.; Kaiser, J.A.; Tee, R.D.; Lorentz, E.B.; Evans, J.T.; Burkhart, D.J. Using Dual Toll-like Receptor Agonism to Drive Th1-Biased Response in a Squalene- and alpha-Tocopherol-Containing Emulsion for a More Effective SARS-CoV-2 Vaccine. Pharmaceutics 2022, 14, 1455. [Google Scholar] [CrossRef]
- Short, K.K.; Miller, S.M.; Walsh, L.; Cybulski, V.; Bazin, H.; Evans, J.T.; Burkhart, D. Co-encapsulation of synthetic lipidated TLR4 and TLR7/8 agonists in the liposomal bilayer results in a rapid, synergistic enhancement of vaccine-mediated humoral immunity. J. Control Release 2019, 315, 186–196. [Google Scholar] [CrossRef]
- Hamouda, T.; Sutcliffe, J.A.; Ciotti, S.; Baker, J.R., Jr. Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin. Vaccine Immunol. 2011, 18, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.; Abdelmonem, K.Y.A.; Alqaderi, N.; Teir, H.J.; Elamin, A.B.A.; Bedewy, D. Fear of Needles and Seasonal Influenza Vaccine Acceptance Amongst Adults in the United Arab Emirates: A Cross-Sectional Study and Implications for Nursing. SAGE Open Nurs. 2024, 10, 23779608241261622. [Google Scholar] [CrossRef]
- De Gioia, E.R.; Porqueddu, A.; Nebiaj, O.; Bianconi, A.; Conni, A.; Montalti, M.; Pandolfi, P.; Todeschini, R.; Fantini, M.P.; Gori, D. The Role of Needle Fear in Pediatric Flu Vaccine Hesitancy: A Cross-Sectional Study in Bologna Metropolitan Area. Vaccines 2022, 10, 1388. [Google Scholar] [CrossRef]
- Taddio, A.; McMurtry, C.M.; Logeman, C.; Gudzak, V.; de Boer, A.; Constantin, K.; Lee, S.; Moline, R.; Uleryk, E.; Chera, T.; et al. Prevalence of pain and fear as barriers to vaccination in children—Systematic review and meta-analysis. Vaccine 2022, 40, 7526–7537. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca. FluMist Influenza Vaccine; AstraZeneca: Cambridge, UK, 2024. [Google Scholar]
- Perego, G.; Vigezzi, G.P.; Cocciolo, G.; Chiappa, F.; Salvati, S.; Balzarini, F.; Odone, A.; Signorelli, C.; Gianfredi, V. Safety and Efficacy of Spray Intranasal Live Attenuated Influenza Vaccine: Systematic Review and Meta-Analysis. Vaccines 2021, 9, 998. [Google Scholar] [CrossRef] [PubMed]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Uno, N.; Thomas, M.H.; Caetano, C.; Ross, T.M. Elicitation of Protective Immune Responses Against Influenza Virus Following Intranasal Delivery of Fluzone or Flublok Vaccines. Vaccines 2026, 14, 103. https://doi.org/10.3390/vaccines14010103
Uno N, Thomas MH, Caetano C, Ross TM. Elicitation of Protective Immune Responses Against Influenza Virus Following Intranasal Delivery of Fluzone or Flublok Vaccines. Vaccines. 2026; 14(1):103. https://doi.org/10.3390/vaccines14010103
Chicago/Turabian StyleUno, Naoko, Matthew H. Thomas, Camila Caetano, and Ted M. Ross. 2026. "Elicitation of Protective Immune Responses Against Influenza Virus Following Intranasal Delivery of Fluzone or Flublok Vaccines" Vaccines 14, no. 1: 103. https://doi.org/10.3390/vaccines14010103
APA StyleUno, N., Thomas, M. H., Caetano, C., & Ross, T. M. (2026). Elicitation of Protective Immune Responses Against Influenza Virus Following Intranasal Delivery of Fluzone or Flublok Vaccines. Vaccines, 14(1), 103. https://doi.org/10.3390/vaccines14010103

