Efficacy of Whole-Cell-Based Mono- and Bi-Valent Vaccines Against Nocardia seriolae and Aeromonas veronii in Largemouth Bass, Micropterus salmoides
Abstract
Highlights
- Formalin-inactivated mono- and bi-valent vaccines of A. veronii and N. seriolae were prepared and determined.
- Serum antibody titer and lysozyme activity of the vaccinated fish were both increased.
- The inactivated bivalent vaccine induced the expression of immune relevant genes.
- The inactivated bivalent vaccine showed a high level of protection to largemouth bass.
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish Husbandry
2.3. Preparation of Formalin-Inactivated Mono- and Bi-Valent Vaccines
2.4. Vaccination and Sample Collection
2.5. Measurement of Serum Immune Parameters
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Quantitative Real-Time PCR (qRT-PCR)
2.8. Challenge Test
2.9. Statistical Analysis
3. Results
3.1. Analysis of Serum Non-Specific Immune Parameters
3.2. Measurement of Serum Specific Antibody Titers
3.3. The Expression of Immune-Related Genes in the Spleen Following Vaccination
3.4. The Expression of Immune-Related Genes in the Head Kidney After Vaccination
3.5. Immune Protective Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bai, J.; Lutz-Carrillo, D.J.; Quan, Y.; Liang, S. Taxonomic status and genetic diversity of cultured largemouth bass Micropterus salmoides in China. Aquaculture 2008, 278, 27–30. [Google Scholar] [CrossRef]
- Wang, G.; Guan, S.; Wu, R.; Xie, J.; Yu, D.; Jian, Q.; Niu, J.; Hu, Z. Analysis and evaluation on nutritional composition in muscles of big mouth bass, Micropterus salmoides. Mar. Fish. 2008, 30, 239–244. [Google Scholar]
- Brown, T.; Runciman, B.; Pollard, S.; Grant, A. Biological synopsis of largemouth bass (Micropterus salmoides). Can. Manuscr. Rep. Fish. Aquat. Sci. 2009, 2884, 1–26. [Google Scholar]
- Ministry of Agriculture and Rural Affairs Fisheries Administration Bureau, National Aquatic Product Technology Extension Station. Fisheries, C.S.o., 2024 China Fishery Statistical Yearbook; Agricultural Press of China: Beijing, China, 2024. [Google Scholar]
- Yang, Q.; Tu, Y.-Y.; Zhang, N.; Miao, B.; Zhang, Y.-Z.; Deng, X.-T.; He, T.; Su, S.-Q.; Lin, L.-Y.; Zhu, S. Co-infections of Aeromonas dhakensis and Chryseobacterium indologenes in largemouth bass (Micropterus salmoides). Aquaculture 2024, 579, 740259. [Google Scholar] [CrossRef]
- Pei, C.; Song, H.; Zhu, L.; Qiao, D.; Yan, Y.; Li, L.; Zhao, X.; Zhang, J.; Jiang, X.; Kong, X. Identification of Aeromonas veronii isolated from largemouth bass Micropterus salmoides and histopathological analysis. Aquaculture 2021, 540, 736707. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, S.; Wu, C.; Wang, Q.; Zhang, Y.; Wang, B.; Wang, L.; Sun, R.; Guo, M.; Ji, W. Bioinformatics characteristics and expression analysis of TLR3 and its adaptor protein TRIF in largemouth bass (Micropterus salmoides) upon Flavobacterium columnare infection. Gene 2023, 872, 147450. [Google Scholar] [CrossRef]
- Fogelson, S.B.; Petty, B.D.; Reichley, S.R.; Ware, C.; Bowser, P.R.; Crim, M.J.; Getchell, R.G.; Sams, K.L.; Marquis, H.; Griffin, M.J. Histologic and molecular characterization of Edwardsiella piscicida infection in largemouth bass (Micropterus salmoides). J. Vet. Diagn. Investig. 2016, 28, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Deng, P.; He, H.; Yang, Q.; Ai, X.; Zhu, X. Identification and biological characterization of the pathogen responsible for acute haemorrhagic disease in largemouth bass. Aquac. Rep. 2025, 40, 102554. [Google Scholar] [CrossRef]
- Qian, Q.; Chen, Z.; Xu, J.; Zhu, Y.; Xu, W.; Gao, X.; Jiang, Q.; Zhang, X. Pathogenicity of Plesiomonas shigelloides causing mass mortalities of largemouth bass (Micropterus salmoides) and its induced host immune response. Fish Shellfish Immunol. 2023, 132, 108487. [Google Scholar] [CrossRef]
- Lei, X.; Zhao, R.; Geng, Y.; Wang, K.; Yang, P.O.; Chen, D.; Huang, X.; Zuo, Z.; He, C.; Chen, Z. Nocardia seriolae: A serious threat to the largemouth bass Micropterus salmoides industry in Southwest China. Dis. Aquat. Org. 2020, 142, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, J.; An, N.; Li, D.-C.; Huang, M.-M.; Fei, H. Updates on infectious diseases of largemouth bass: A major review. Fish Shellfish Immunol. 2024, 154, 109976. [Google Scholar] [CrossRef]
- Song, H.; Yang, B.; Kang, Y.; Cong, W. Critical roles of VipB protein on virulence and oxidative stress tolerance in Aeromonas veronii. J. Fish Dis. 2023, 46, 487–497. [Google Scholar] [CrossRef]
- Zhu, X.H.; Qian, Q.Q.; Wu, C.C.; Zhu, Y.J.; Gao, X.J.; Jiang, Q.; Wang, J.; Liu, G.X.; Zhang, X.J. Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response. Microorganisms 2022, 10, 2198. [Google Scholar] [CrossRef]
- Dong, H.; Techatanakitarnan, C.; Jindakittikul, P.; Thaiprayoon, A.; Taengphu, S.; Charoensapsri, W.; Khunrae, P.; Rattanarojpong, T.; Senapin, S. Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). J. Fish Dis. 2017, 40, 1395–1403. [Google Scholar] [CrossRef]
- Smyrli, M.; Prapas, A.; Rigos, G.; Kokkari, C.; Pavlidis, M.; Katharios, P. Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathol. 2017, 52, 68–81. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, X.; Li, J.; Li, G.; Liu, Z.; Mo, Z. Identification and virulence properties of Aeromonas veronii bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. J. Fish Dis. 2016, 39, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Sun, J.; Han, Z.; Yang, X.; Xian, J.-a.; Lv, A.; Hu, X.; Shi, H. Isolation, identification and characteristics of Aeromonas veronii from diseased crucian carp (Carassius auratus gibelio). Front. Microbiol. 2019, 10, 2742. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, G.; Xia, L.; Lu, Y. A review on the pathogenic bacterium Nocardia seriolae: Aetiology, pathogenesis, diagnosis and vaccine development. Rev. Aquac. 2023, 15, 14–34. [Google Scholar] [CrossRef]
- Labrie, L.; Ng, J.; Tan, Z.; Komar, C.; Ho, E.; Grisez, L. Nocardial Infections in Fish: An Emerging Problem in Both Freshwater and Marine Aquaculture Systems in Asia; Bondad-Reantaso, M.G., Mohan, V., Crumlish, M., Subasinghe, R.P., Eds.; Diseases in Asian aquaculture VI. Fish Health Section, Asian Fisheries Society: Manila, Philippines, 2008; pp. 297–312. [Google Scholar]
- Itano, T.; Kawakami, H.; Kono, T.; Sakai, M. Experimental induction of nocardiosis in yellowtail, Seriola quinqueradiata Temminck & Schlegel by artificial challenge. J. Fish Dis. 2006, 29, 529–534. [Google Scholar] [CrossRef]
- Imajoh, M.; Sukeda, M.; Shimizu, M.; Yamane, J.; Ohnishi, K.; Oshima, S.-i. Draft genome sequence of erythromycin-and oxytetracycline-sensitive Nocardia seriolae strain U-1 (NBRC 110359). Genome Announc. 2016, 4, e01606-15. [Google Scholar] [CrossRef]
- Chen, S.C.; Lee, J.L.; Lai, C.C.; Gu, Y.W.; Wang, C.T.; Chang, H.Y.; Tsai, K.H. Nocardiosis in sea bass, Lateolabrax japonicus, in Taiwan. J. Fish Dis. 2000, 23, 299–307. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Liu, C.; Chang, O.; Feng, Y.; Jiang, L.; Li, K. Nocardia seriolae infection in cultured jade perch, Scortum barcoo. Aquac. Int. 2017, 25, 2201–2212. [Google Scholar] [CrossRef]
- Wang, G.-L.; Xu, Y.-J.; Jin, S.; Zhu, J.-L.; Yuan, S.-P. Nocardiosis in snakehead, Ophiocephalus argus Cantor. Aquaculture 2007, 271, 54–60. [Google Scholar] [CrossRef]
- Xu, H.; Xu, R.; Wang, X.; Liang, Q.; Zhang, L.; Liu, J.; Wei, J.; Lu, Y.; Yu, D. Co-infections of Aeromonas veronii and Nocardia seriolae in largemouth bass (Micropterus salmoides). Microb. Pathog. 2022, 173, 105815. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Guo, H.; Guo, B.; Yi, J.; Yang, Z.; Zhou, S.; Xiu, Y. Efficacy of bivalent vaccine against Aeromonas salmonicida and Edwardsiella tarda infections in turbot. Fish Shellfish Immunol. 2023, 139, 108837. [Google Scholar] [CrossRef] [PubMed]
- Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef]
- Guo, K.; Sun, Y.; Tang, X.; Zhou, X.; Jiang, M.; Yang, Q.; Li, Y.; Wu, Z. Pathogenicity and inactivated vaccine treatment of Aeromonas veronii JW-4 on crucian carp. Microb. Pathog. 2023, 183, 106315. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, B.; Chen, M.; Zeng, H.; Zhang, X.-J.; Zhang, Y.-A.; Zhou, Y. Comparison and evaluation of DNA vaccines against Nocardia seriolae infection in largemouth bass (Micropterus salmoides). Aquaculture 2025, 596, 741772. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, W.; Xu, Z. Current use and development of fish vaccines in China. Fish Shellfish Immunol. 2020, 96, 223–234. [Google Scholar] [CrossRef]
- Tumree, P.; Bunnoy, A.; Tang, X.; Srisapoome, P. Efficacy of whole-cell-based monovalent and bivalent vaccines against Streptococcus iniae and Flavobacterium covae in fingerling Asian seabass (Lates calcarifer). Fish Shellfish Immunol. 2024, 144, 109269. [Google Scholar] [CrossRef]
- Xing, J.; Xu, H.; Wang, Y.; Tang, X.; Sheng, X.; Zhan, W. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus). Vaccine 2017, 35, 3196–3203. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zhang, W.-W.; Hou, J.-H.; Sun, L. Immunoprotective analysis of VhhP2, a Vibrio harveyi vaccine candidate. Vaccine 2009, 27, 2733–2740. [Google Scholar] [CrossRef]
- Yang, S.; Chen, W.; He, F.; Fu, S.; Jin, Z.; Zheng, C.; Zhang, X.; Ye, Z.; Jin, H.; Qian, S. Comparison of the roles of IgM in systemic and mucosal immunity via tissue distribution analysis in largemouth bass (Micropterus salmoides). Aquaculture 2020, 527, 735488. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Gao, X.; Zhang, H.; Chen, N.; Miao, Z.; Liu, X.; Zhang, X. The pathogenicity characterization of non-O1 Vibrio cholerae and its activation on immune system in freshwater shrimp Macrobrachium nipponense. Fish Shellfish Immunol. 2019, 87, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yang, P.; Wang, W.; Chi, S.; Mai, K.; Song, F.; Wang, L. Effects of dietary lysine on regulating GH-IGF system, intermediate metabolism and immune response in largemouth bass (Micropterus salmoides). Aquac. Rep. 2020, 17, 100323. [Google Scholar] [CrossRef]
- Fu, X.; Li, W.; Kong, M.; Liang, H.; Lin, Q.; Niu, Y.; Luo, X.; Ma, B.; Zhou, J.; Li, N. A Promising Attenuated Rhabdovirus Vaccine Candidate Conferring Dual-Route Protection Against MSRV Disease in Largemouth Bass (Micropterus salmoides). Vaccines 2025, 13, 645. [Google Scholar] [CrossRef]
- Hoang, H.H.; Wang, P.-C.; Chen, S.-C. The protective efficacy of recombinant hypoxic response protein 1 of Nocardia seriolae in largemouth bass (Micropterus salmoides). Vaccine 2020, 38, 2925–2936. [Google Scholar] [CrossRef]
- Fu, X.; Li, N.; Lin, Q.; Guo, H.; Zhang, D.; Liu, L.; Wu, S. Protective immunity against infectious spleen and kidney necrosis virus induced by immunization with DNA plasmid containing mcp gene in Chinese perch Siniperca chuatsi. Fish Shellfish Immunol. 2014, 40, 259–266. [Google Scholar] [CrossRef]
- Mohamad, A.; Zamri-Saad, M.; Amal, M.N.A.; Al-Saari, N.; Monir, M.S.; Chin, Y.K.; Md Yasin, I.-S. Vaccine efficacy of a newly developed feed-based whole-cell polyvalent vaccine against vibriosis, streptococcosis and motile aeromonad septicemia in asian seabass, Lates calcarifer. Vaccines 2021, 9, 368. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, L.; Tian, Y.; Tan, A.; Bai, J.; Li, S. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Dev. Comp. Immunol. 2010, 34, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Monir, M.S.; Yusoff, S.b.M.; Zulperi, Z.b.M.; Hassim, H.b.A.; Mohamad, A.; Ngoo, M.S.b.M.H.; Ina-Salwany, M.Y. Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus × O. niloticus). BMC Vet. Res. 2020, 16, 226. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.-Q.; Tian, L.-X.; Liu, Y.-J.; Niu, J. Enhanced intestinal health, immune responses and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary hydrolyzed yeast (Rhodotorula mucilaginosa) and Bacillus licheniformis. Aquac. Rep. 2020, 17, 100385. [Google Scholar] [CrossRef]
- He, R.P.; Feng, J.; Tian, X.L.; Dong, S.L.; Wen, B. Effects of dietary supplementation of probiotics on the growth, activities of digestive and non-specific immune enzymes in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Aquac. Res. 2017, 48, 5782–5790. [Google Scholar] [CrossRef]
- Kong, W.G.; Mu, Q.J.; Dong, Z.R.; Luo, Y.Z.; Ai, T.S.; Xu, Z. Mucosal immune responses and protective efficacy in yellow catfish after immersion vaccination with bivalent inactivated Aeromonas veronii and Edwardsiella ictaluri vaccine. Water Biol. Secur. 2022, 1, 100032. [Google Scholar] [CrossRef]
- Moser, M.; Leo, O. Key concepts in immunology. Vaccine 2010, 28, C2–C13. [Google Scholar] [CrossRef]
- Hong, S.; Li, R.; Xu, Q.; Secombes, C.J.; Wang, T. Two types of TNF-α exist in teleost fish: Phylogeny, expression, and bioactivity analysis of type-II TNF-α3 in rainbow trout Oncorhynchus mykiss. J. Immunol. 2013, 191, 5959–5972. [Google Scholar] [CrossRef]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.J. The function of fish cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, H.; Xiao, J.; Wang, Q.; Liu, Q.; Zhang, Y. Immune responses of zebrafish (Danio rerio) induced by bath-vaccination with a live attenuated Vibrio anguillarum vaccine candidate. Fish Shellfish Immunol. 2012, 33, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Martin-Orozco, E.; Goodman, J.S.; Nguyen, M.-D.; Sato, Y.; Ronaghy, A.; Kornbluth, R.S.; Richman, D.D.; Carson, D.A.; Raz, E. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat. Med. 1997, 3, 849–854. [Google Scholar] [CrossRef]
- Monir, M.S.; Yusoff, M.S.M.; Zulperi, Z.M.; Hassim, H.A.; Zamri-Saad, M.; Amal, M.N.A.; Salleh, A.; Mohamad, A.; Yie, L.J.; Ina-Salwany, M.Y. Immuno-protective efficiency of feed-based whole-cell inactivated bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). Fish Shellfish Immunol. 2021, 113, 162–175. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Quillet, E.; Boudinot, P.; Fischer, U. What could be the mechanisms of immunological memory in fish? Fish Shellfish Immunol. 2019, 85, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Ye, J.; Kaattari, S.L. Differential compartmentalization of memory B cells versus plasma cells in salmonid fish. Eur. J. Immunol. 2013, 43, 360–370. [Google Scholar] [CrossRef]
- Tanpichai, P.; Chaweepack, S.; Senapin, S.; Piamsomboon, P.; Wongtavatchai, J. Immune activation following vaccination of Streptococcus iniae bacterin in Asian seabass (Lates calcarifer, Bloch 1790). Vaccines 2023, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.O.; Boudinot, P. B-cell responses and antibody repertoires in teleost fish: From Ag receptor diversity to immune memory and vaccine development. In Principles of Fish Immunology: From Cells and Molecules to Host Protection; Springer: Cham, Switzerland, 2022; pp. 253–278. [Google Scholar]
- Klesius, P.H.; Shoemaker, C.A.; Evans, J.J. Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus). Aquaculture 2000, 188, 237–246. [Google Scholar] [CrossRef]
- Karami, A.; Christianus, A.; Ishak, Z.; Syed, M.A.; Courtenay, S.C. The effects of intramuscular and intraperitoneal injections of benzo [a] pyrene on selected biomarkers in Clarias gariepinus. Ecotoxicol. Environ. Saf. 2011, 74, 1558–1566. [Google Scholar] [CrossRef]
- Rijkers, G.; Frederix-Wolters, E.; van Muiswinkel, W.B. The immune system of cyprinid fish. The effect of antigen dose and route of administration on the development of immunological memory in carp (Cyprinus carpio). In Phylogeny of Immunological Memory; Manning, M.J., Ed.; Elsevier: North-Holland, Amsterdam, 1980; pp. 93–102. [Google Scholar]
- Wu, X.; Xing, J.; Tang, X.; Sheng, X.; Chi, H.; Zhan, W. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol. Immunol. 2022, 149, 77–86. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Abellán, E.; Meseguer, J.; Esteban, M.A. Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol. 2014, 40, 24–31. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Arizcun, M.; Meseguer, J.; Esteban, M.A. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2014, 36, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Kaattari, I.M.; Ma, C.; Kaattari, S. The teleost humoral immune response. Fish Shellfish Immunol. 2013, 35, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Sun, X.; Liu, Q.; Zhang, Y.; Liu, X. Synergistic effect of a combined live Vibrio anguillarum and Edwardsiella piscicida vaccine in turbot. Fish Shellfish Immunol. 2019, 88, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Ouyang, A.; Wang, H.; Liu, W.; Xue, M.; Zhou, Y.; Ai, T.; Zeng, L.; Liu, X. A bivalent vaccine comprised of inactivated Aeromonas veronii and Edwardsiella ictaluri stimulates protective immune responses in yellow-head catfish, Pelteobagrus fulvidraco. Aquac. Res. 2021, 52, 5673–5681. [Google Scholar] [CrossRef]
Target Gene | F: Primer Sequence (5′-3′) | R: Primer Sequence (5′-3′) | Amplicon Size (bp) | Accession No. | Reference |
---|---|---|---|---|---|
TNF-α | CTTCGTCTACAGCCAGGCATCG | TTTGGCACACCGACCTCACC | 161 | XM_038710731.1 | [38] |
IL-1β | CGTGACTGACAGCAAAAAGAGG | GATGCCCAGAGCCACAGTTC | 166 | XM_046034892.1 | [38] |
IL-8 | CGTTGAACAGACTGGGAGAGATG | AGTGGGATGGCTTCATTATCTTGT | 107 | MW751832.1 | [38] |
IL-10 | ACAACCAGTGCTGCCGTT | GCAGCGCTGTGTCTAAGTCA | 117 | XM_038696252.1 | [39] |
IFN-γ | TGCAGGCTCTCAAACACATC | TGTTTTCGGTCAGTGTGCTC | 105 | XM_038707474.1 | [40] |
CD4-1 | GCTCCAGCGGGGAATAATTT | GCCAGGCAAGCTCAAAGTTA | 73 | XM_038711093.1 | [40] |
CD8α | GGAAGGGGATCCTGTTGACA | CCAGCACTCGAAACCAGATG | 74 | XM_038696403.1 | [40] |
IgM | CTGGACCAGTCTCCCTCTGA | CGAGGTACTGAGTGCTGCTG | 235 | MZ396108.1 | [40] |
IgT | AAAGGAGATGGGAGTGAGCC | GTTGGGTCTTCTGTGGGGG | 199 | MZ388129.1 | [40] |
MHCI-α | GTGGTTCAACGTCAACATCG | ACCCAGACTTGTTCGGTGTC | 198 | XM_046058860.1 | [40] |
MHCII-α | GAGGACCTTGCTGTCATTGG | GCGTACCAAACCTCTTCACC | 98 | XM038696307 | [40] |
β-actin | CCACCACAGCCGAGAGGGAA | TCATGGTGGATGGGGCCAGG | 303 | MH018565.1 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhu, N.; Xu, R.; Wangkahart, E.; Zhang, L.; Liu, L.; Wang, R.; Xu, Z.; Kong, W.; Xu, H. Efficacy of Whole-Cell-Based Mono- and Bi-Valent Vaccines Against Nocardia seriolae and Aeromonas veronii in Largemouth Bass, Micropterus salmoides. Vaccines 2025, 13, 942. https://doi.org/10.3390/vaccines13090942
Zhang Q, Zhu N, Xu R, Wangkahart E, Zhang L, Liu L, Wang R, Xu Z, Kong W, Xu H. Efficacy of Whole-Cell-Based Mono- and Bi-Valent Vaccines Against Nocardia seriolae and Aeromonas veronii in Largemouth Bass, Micropterus salmoides. Vaccines. 2025; 13(9):942. https://doi.org/10.3390/vaccines13090942
Chicago/Turabian StyleZhang, Qiushi, Nengbin Zhu, Ruiping Xu, Eakapol Wangkahart, Lin Zhang, Lihe Liu, Rui Wang, Zhen Xu, Weiguang Kong, and Hongsen Xu. 2025. "Efficacy of Whole-Cell-Based Mono- and Bi-Valent Vaccines Against Nocardia seriolae and Aeromonas veronii in Largemouth Bass, Micropterus salmoides" Vaccines 13, no. 9: 942. https://doi.org/10.3390/vaccines13090942
APA StyleZhang, Q., Zhu, N., Xu, R., Wangkahart, E., Zhang, L., Liu, L., Wang, R., Xu, Z., Kong, W., & Xu, H. (2025). Efficacy of Whole-Cell-Based Mono- and Bi-Valent Vaccines Against Nocardia seriolae and Aeromonas veronii in Largemouth Bass, Micropterus salmoides. Vaccines, 13(9), 942. https://doi.org/10.3390/vaccines13090942