Optimizing Immunization Strategies for Individuals Living with HIV: A Review of Essential Vaccines, Vaccine Coverage, and Adherence Factors
Abstract
1. Introduction
2. Relevant Sections
2.1. Standard Vaccines
2.1.1. Tetanus, Diphtheria, and Pertussis Vaccination
2.1.2. Hepatitis Vaccines
Hepatitis A Vaccine
Hepatitis B Vaccine
Hepatitis A and B
2.1.3. Human Papillomavirus Vaccine
2.1.4. Influenza
2.1.5. Meningococcal Vaccination
2.1.6. Pneumococcal Vaccination
2.1.7. Measles, Mumps, Rubella (MMR) Vaccine
2.1.8. Varicella Vaccine
2.1.9. Varicella Zoster Vaccine
2.1.10. SARS-CoV-2 Vaccine
2.1.11. Respiratory Syncytial Virus (RSV)
2.2. Travel Vaccines
2.2.1. Cholera (Oral Live Vaccine)
2.2.2. Tick-Borne Encephalitis Vaccine
2.2.3. Yellow Fever Vaccine
2.2.4. Japanese Encephalitis Vaccine
2.2.5. Rabies Vaccine
2.2.6. Typhoid Fever Vaccine
2.2.7. Monkeypox Vaccine
2.2.8. Dengue Vaccine
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birk, N.K.; Monday, L.; Singh, T.; Cherabuddi, M.; Hojeij, M.; Ho, B.; Chen, A.; Brar, I.; Alangaden, G. Vaccine coverage and factors associated with vaccine adherence in persons with HIV at an urban infectious disease clinic. Hum. Vaccines Immunother. 2023, 19, 2204785. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.M.; Klepser, D.G.; Bares, S.H.; Scarsi, K.K. Predictors of vaccination rates in people living with HIV followed at a specialty care clinic. Hum. Vaccines Immunother. 2021, 17, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Tsachouridou, O.; Georgiou, A.; Naoum, S.; Vasdeki, D.; Papagianni, M.; Kotoreni, G.; Forozidou, E.; Tsoukra, P.; Gogou, C.; Chatzidimitriou, D.; et al. Factors associated with poor adherence to vaccination against hepatitis viruses, streptococcus pneumoniae and seasonal influenza in HIV-infected adults. Hum. Vaccines Immunother. 2019, 15, 295–304. [Google Scholar] [CrossRef] [PubMed]
- BreiBreitschwerdt, S.; Schwarze-Zander, C.; Al Tayy, A.; Mutevelli, J.; Wasmuth, J.-C.; Rockstroh, J.K.; Boesecke, C. Implementation of EACS vaccination recommendations among people living with HIV. Infection 2022, 50, 1491–1497. [Google Scholar] [CrossRef]
- Dirschka, T.; Oster-Schmidt, C.; Schmitz, L. (Eds.) Klinikleitfaden Dermatologie, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- WHO Vacccination Guidelines. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/policies/who-recommendations-for-routine-immunization---summary-tables (accessed on 15 July 2025).
- CDC Vaccines Schedule. Available online: https://www.cdc.gov/vaccines/hcp/imz-schedules/index.html (accessed on 15 July 2025).
- EACS Guidelines. Available online: https://www.eacsociety.org/guidelines/eacs-guidelines/ (accessed on 15 July 2025).
- RKISTIKO. Available online: https://www.rki.de/DE/ (accessed on 13 January 2024).
- PEI Impfstoffe. Available online: https://www.pei.de/DE/arzneimittel/impfstoffe/impfstoffe-node.html (accessed on 15 July 2025).
- WHO. H.I.V. Available online: https://www.who.int/data/gho/data/themes/hiv-aids (accessed on 13 January 2024).
- Mpox (Affenpocken): Eine Bestandsaufnahme. Available online: https://www.hivbuch.de/wp-content/uploads/2020/11/1404_CME_Mpox.pdf (accessed on 13 January 2024).
- CDC Vaccines Schedule. Available online: https://www.cdc.gov/vaccines/schedules/downloads/adult/adult-combined-schedule.pdf (accessed on 13 January 2024).
- CDC Tetanus. Available online: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/tetanus.pdf (accessed on 13 January 2024).
- Dauby, N.; Gobert, C.; Benslimane, A.; Nagant, C.; Necsoi, C.; Wijngaert, S.v.D.; Corrazza, F.; Delforge, M.; De Wit, S. Durability of tetanus seroprotection in people living with HIV. Aids 2022, 36, 1135–1139. [Google Scholar] [CrossRef]
- Nunes, M.C.; Tamblyn, A.; Jose, L.; Ntsimane, M.; Lerotholi, N.; Machimana, C.; Taylor, A.; Laher, F.; Madhi, S.A. Immunogenicity of tetanus, diphtheria and acellular pertussis vaccination among pregnant women living with and without HIV. Aids 2023, 37, 2305–2310. [Google Scholar] [CrossRef]
- Boey, L.; Bosmans, E.; Ferreira, L.B.; Heyvaert, N.; Nelen, M.; Smans, L.; Vandermeulen, C. Seroprevalence of Antibodies against Diphtheria, Tetanus and Pertussis in Adult At-Risk Patients. Vaccines 2021, 9, 18. [Google Scholar] [CrossRef]
- Troy, S.B.; Kouiavskaia, D.; Siik, J.; Kochba, E.; Beydoun, H.; Mirochnitchenko, O.; Levin, Y.; Khardori, N.; Chumakov, K.; Maldonado, Y. Comparison of the Immunogenicity of Various Booster Doses of Inactivated Polio Vaccine Delivered Intradermally Versus Intramuscularly to HIV-Infected Adults. J. Infect. Dis. 2015, 211, 1969–1976. [Google Scholar] [CrossRef]
- Spina, F.G.; Gouvea, A.; Succi, R.C.M.; Calanca, F.; Weckx, L.Y.; Terreri, M.T.; de Moraes-Pinto, M.I. Immune response to a Tdap booster in vertically HIV-infected adolescents. Vaccine 2018, 36, 5609–5616. [Google Scholar] [CrossRef]
- EACS Guidelines. Available online: https://eacs.sanfordguide.com/prevention-non-infectious-co-morbidities/vaccination (accessed on 13 January 2024).
- Mena, G.; García-Basteiro, A.L.; Bayas, J.M. Hepatitis B and A vaccination in HIV-infected adults: A review. Hum. Vaccines Immunother. 2015, 11, 2582–2598. [Google Scholar] [CrossRef]
- Tseng, Y.-T.; Chang, S.-Y.; Liu, W.-C.; Sun, H.-Y.; Wu, C.-H.; Wu, P.-Y.; Lu, C.-L.; Hung, C.-C.; Chang, S.-C. Comparative effectiveness of two doses versus three doses of hepatitis A vaccine in human immunodeficiency virus-infected and -uninfected men who have sex with men. Hepatology 2013, 57, 1734–1741. [Google Scholar] [CrossRef]
- Jabłonowska, E.; Kuydowicz, J. Durability of response to vaccination against viral hepatitis A in HIV-infected patients: A 5-year observation. Int. J. STD AIDS 2014, 25, 745–750. [Google Scholar] [CrossRef]
- Kourkounti, S.; Papaizos, V.; Leuow, K.; Kordosis, T.; Antoniou, C. Hepatitis A vaccination and immunological parameters in HIV-infected patients. Viral Immunol. 2013, 26, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Launay, O.; Grabar, S.; Gordien, E.; Desaint, C.; Jegou, D.; Abad, S.; Girard, P.-M.; Bélarbi, L.; Guérin, C.; Dimet, J.; et al. Immunological efficacy of a three-dose schedule of hepatitis A vaccine in HIV-infected adults: HEPAVAC study. JAIDS J. Acquir. Immune Defic. Syndr. 2008, 49, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.L.; Smith, V.; Sands, M. Hepatitis B vaccine: A seven-year study of adherence to the immunization guidelines and efficacy in HIV-1-positive adults. Int. J. Infect. Dis. 2008, 12, e77–e83. [Google Scholar] [CrossRef] [PubMed]
- Launay, O.; Rosenberg, A.R.; Rey, D.; Pouget, N.; Michel, M.L.; Reynes, J.; Carrat, F. Long-term Immune Response to Hepatitis B Virus Vaccination Regimens in Adults With Human Immunodeficiency Virus 1: Secondary Analysis of a Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 603–610. [Google Scholar] [CrossRef]
- Launay, O.; van der Vliet, D.; Rosenberg, A.R.; Michel, M.L.; Piroth, L.; Rey, D.; Carrat, F. Safety and immunogenicity of 4 intramuscular double doses and 4 intradermal low doses vs standard hepatitis B vaccine regimen in adults with HIV-1: A randomized controlled trial. JAMA 2011, 305, 1432–1440. [Google Scholar] [CrossRef]
- Piroth, L.; Launay, O.; Michel, M.-L.; Bourredjem, A.; Miailhes, P.; Ajana, F.; Chirouze, C.; Zucman, D.; Wendling, M.-J.; Nazzal, D.; et al. Vaccination Against Hepatitis B Virus (HBV) in HIV-1-Infected Patients With Isolated Anti-HBV Core Antibody: The ANRS HB EP03 CISOVAC Prospective Study. J. Infect. Dis. 2016, 213, 1735–1742. [Google Scholar] [CrossRef]
- Fonseca, M.O.; Pang, L.W.; de Paula Cavalheiro, N.; Barone, A.A.; Heloisa Lopes, M. Randomized trial of recombinant hepatitis B vaccine in HIV-infected adult patients comparing a standard dose to a double dose. Vaccine 2005, 23, 2902–2908. [Google Scholar] [CrossRef]
- Cornejo-Juárez, P.; Volkow-Fernández, P.; Escobedo-López, K.; Vilar-Compte, D.; Ruiz-Palacios, G.; Soto-Ramírez, L.E. Randomized controlled trial of Hepatitis B virus vaccine in HIV-1-infected patients comparing two different doses. AIDS Res. Ther. 2006, 3, 9. [Google Scholar] [CrossRef]
- Khaimova, R.; Fischetti, B.; Cope, R.; Berkowitz, L.; Bakshi, A. Serological response with Heplisav-B® in prior Hepatitis B vaccine non-responders living with HIV. Vaccine 2021, 39, 6529–6534. [Google Scholar] [CrossRef]
- Schnittman, S.R.; Zepf, R.; Cocohoba, J.; Sears, D. Brief Report: Heplisav-B Seroprotection in People With HIV: A Single-Center Experience. JAIDS J. Acquir. Immune Defic. Syndr. 2021, 86, 445–449. [Google Scholar] [CrossRef]
- Jimenez, H.R.; Hallit, R.R.; Debari, V.A.; Slim, J. Hepatitis A vaccine response in HIV-infected patients: Are TWINRIX and HAVRIX interchangeable? Vaccine 2013, 31, 1328–1333. [Google Scholar] [CrossRef]
- Background Paper to the Revised Recommendation for Hepatitis B Vaccination of Persons at Particular Risk and for Hepatitis B Postexposure Prophylaxis in Germany. Available online: https://www.rki.de/EN/Topics/Infectious-diseases/Immunisation/STIKO/STIKO-recommendations/Downloads/Background_paper_HBV_vaccination.pdf?__blob=publicationFile&v=1#:~:text=group.,≥100%20IU/l) (accessed on 13 January 2024).
- Krings, A.; Schmidt, D.; Kollan, C.; Meixenberger, K.; Bannert, N.; Münstermann, D.; German HIV-1 Seroconverter Study Group. Increasing hepatitis B vaccination coverage and decreasing hepatitis B co-infection prevalence among people with HIV-1 in Germany, 1996–2019. Results from a cohort study primarily in men who have sex with men. HIV Med. 2023, 25, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Cardell, K.; Akerlind, B.; Sällberg, M.; Frydén, A. Excellent response rate to a double dose of the combined hepatitis A and B vaccine in previous nonresponders to hepatitis B vaccine. J. Infect. Dis. 2008, 198, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Champion, C.R. Heplisav-B: A Hepatitis B Vaccine With a Novel Adjuvant. Ann. Pharmacother. 2021, 55, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-H.; Lim, S.-G. CpG-Adjuvanted Hepatitis B Vaccine (HEPLISAV-B®) Update. Expert Rev. Vaccines 2021, 20, 487–495. [Google Scholar] [CrossRef]
- Dandapani, S.V.; Eaton, M.; Thomas, C.R.; Pagnini, P.G., Jr. HIV-positive anal cancer: An update for the clinician. J. Gastrointest. Oncol. 2010, 1, 34–44. [Google Scholar]
- Cudós, E.S.; Sotomayor, C.; Canuto, M.M.; Cabello, A.; Curran, A.; Ocampo, A.; Rava, M.; Muriel, A.; Macías, J.; Rial-Crestelo, D.; et al. Incidence of Anal Cancer and Related Risk Factors in HIV-Infected Patients Enrolled in the National Prospective Spanish Cohort CoRIS. Dis Colon Rectum 2023, 66, e1186–e1194. [Google Scholar] [CrossRef]
- Wieland, U.; Oellig, F.; Kreuter, A. Anal dysplasia and anal cancer. English version. Der Hautarzt 2020, 71 (Suppl. 2), 74–81. [Google Scholar] [CrossRef]
- Khandwala, P.; Singhal, S.; Desai, D.; Parsi, M.; Potdar, R. HIV-Associated Anal Cancer. Cureus 2021, 13, e14834. [Google Scholar] [CrossRef]
- Akhatova, A.; Azizan, A.; Atageldiyeva, K.; Ashimkhanova, A.; Marat, A.; Iztleuov, Y.; Suleimenova, A.; Shamkeeva, S.; Aimagambetova, G. Prophylactic Human Papillomavirus Vaccination: From the Origin to the Current State. Vaccines 2022, 10, 1912. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Pasquau, J.; Omar-Mohamed, M.; Sampedro, A.; López-Ruz, M.A.; Hidalgo, J.L.; Ramírez-Taboada, J. Effectiveness of the Quadrivalent HPV Vaccine in Preventing Anal ≥ HSILs in a Spanish Population of HIV+ MSM Aged > 26 Years. Viruses 2021, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Boey, L.; Curinckx, A.; Roelants, M.; Derdelinckx, I.; Van Wijngaerden, E.; De Munter, P.; Vos, R.; Kuypers, D.; Van Cleemput, J.; Vandermeulen, C. Immunogenicity and Safety of the 9-Valent Human Papillomavirus Vaccine in Solid Organ Transplant Recipients and Adults Infected With Human Immunodeficiency Virus (HIV). Clin. Infect. Dis. 2021, 73, e661–e671. [Google Scholar] [CrossRef] [PubMed]
- Palefsky, J.M.; Giuliano, A.R.; Goldstone, S.; Moreira, E.D.; Aranda, C., Jr.; Jessen, H.; Hillman, R.; Ferris, D.; Coutlee, F.; Stoler, M.H.; et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N. Engl. J. Med. 2011, 365, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, R.V.; Brown, E.R.; Onono, M.; Bukusi, E.A.; Njoroge, B.; Winer, R.L.; Donnell, D.; Galloway, D.; Cherne, S.; Heller, K.; et al. Single-dose HPV vaccination efficacy among adolescent girls and young women in Kenya (the KEN SHE Study): Study protocol for a randomized controlled trial. Trials 2021, 22, 661. [Google Scholar] [CrossRef]
- Wnukowski-Mtonga, P.; Jayasinghe, S.; Chiu, C.; Macartney, K.; Brotherton, J.; Donovan, B.; Hall, M.; Smith, D.W.; Peterson, K.; Campbell-Lloyd, S.; et al. Scientific evidence supporting recommendations on the use of the 9-valent HPV vaccine in a 2-dose vaccine schedule in Australia. Commun. Dis. Intell. 2020, 44, 12. [Google Scholar] [CrossRef]
- S3-Leitlinie, Evidenz- und Konsensbasierte Leitlinie Impfprävention HPV-Assoziier-ter Neoplasien—Langfassung—AWMF-Register Nr.: 082-002. 2020. Available online: https://hpv-impfleitlinie.de/doc/082-002l_S3_Impfpraevention-HPV-assoziierter-Neoplasien_2020-07_01.pdf (accessed on 13 January 2024).
- Pariani, E.; Boschini, A.; Amendola, A.; Poletti, R.; Anselmi, G.; Begnini, M.; Ranghiero, A.; Cecconi, G.; Zanetti, A.R. Response to 2009 pandemic and seasonal influenza vaccines co-administered to HIV-infected and HIV-uninfected former drug users living in a rehabilitation community in Italy. Vaccine 2011, 29, 9209–9213. [Google Scholar] [CrossRef]
- Durier, C.; Desaint, C.; Lucht, F.; Girard, P.-M.; Lévy, Y.; May, T.; Michelet, C.; Rami, A.; Roman, F.; Delfraissy, J.-F.; et al. Long-term immunogenicity of two doses of 2009 A/H1N1v vaccine with and without AS03(A) adjuvant in HIV-1-infected adults. Aids 2013, 27, 87–93. [Google Scholar] [CrossRef]
- Schwarze-Zander, C.; Steffens, B.; Emmelkamp, J.; Kümmerle, T.; Boesecke, C.; Wasmuth, J.; Strassburg, C.; Fätkenheuer, G.; Rockstroh, J.; Eis-Hübinger, A. How successful is influenza vaccination in HIV infected patients? Results from an influenza A(H1N1)pdm09 vaccine study. HIV AIDS Rev. 2016, 15, 111–115. [Google Scholar] [CrossRef]
- Madhi, S.A.; Maskew, M.; Koen, A.; Kuwanda, L.; Besselaar, T.G.; Naidoo, D.; Sanne, I. Trivalent Inactivated Influenza Vaccine in African Adults Infected With Human Immunodeficient Virus: Double Blind, Randomized Clinical Trial of Efficacy, Immunogenicity, and Safety. Clin. Infect. Dis. 2011, 52, 128–137. [Google Scholar] [CrossRef]
- Zhang, T.; Geng, J.; Du, Y.; Yang, H.; Jin, Y.; Chen, S.; Duan, G. A meta-analysis of immunogenicity and safety of two versus single-doses of influenza A (H1N1) vaccine in person living with HIV. Int. J. STD AIDS 2024, 35, 326–336. [Google Scholar] [CrossRef]
- MacNeil, J.R.; Rubin, L.G.; Patton, M.; Ortega-Sanchez, I.R.; Martin, S.W. Recommendations for Use of Meningococcal Conjugate Vaccines in HIV-Infected Persons—Advisory Committee on Immunization Practices, 2016. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Siberry, G.K.; Williams, P.L.; Lujan-Zilbermann, J.; Warshaw, M.G.; Spector, S.A.; Decker, M.D.; Heckman, B.E.; Demske, E.F.; Read, J.S.M.; Jean-Philippe, P.; et al. Phase I/II, open-label trial of safety and immunogenicity of meningococcal (groups A, C, Y, and W-135) polysaccharide diphtheria toxoid conjugate vaccine in human immunodeficiency virus-infected adolescents. Pediatr. Infect. Dis. J. 2010, 29, 391–396. [Google Scholar] [CrossRef] [PubMed]
- AbAbara, W.; Bernstein, K.T.; Lewis, F.M.T.; Schillinger, J.A.; Feemster, K.; Pathela, P.; Hariri, S.; Islam, A.; Eberhart, M.; Cheng, I.; et al. Effectiveness of a serogroup B outer membrane vesicle meningococcal vaccine against gonorrhoea: A retrospective observational study. Lancet Infect. Dis. 2022, 22, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Azze, R.F.O. A meningococcal B vaccine induces cross-protection against gonorrhea. Clin. Exp. Vaccine Res. 2019, 8, 110–115. [Google Scholar] [CrossRef]
- Paynter, J.; Goodyear-Smith, F.; Morgan, J.; Saxton, P.; Black, S.; Petousis-Harris, H. Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. Vaccines 2019, 7, 5. [Google Scholar] [CrossRef]
- Bruxvoort, K.J.; Lewnard, J.A.; Chen, L.H.; Tseng, H.F.; Chang, J.; Veltman, J.; Marrazzo, J.; Qian, L. Prevention of Neisseria gonorrhoeae with Meningococcal B Vaccine: A Matched Cohort Study in Southern California. Clin. Infect. Dis. 2023, 76, e1341–e1349. [Google Scholar] [CrossRef]
- Tinsley, C.R.; Nassif, X. Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: Two closely related bacteria expressing two different pathogenicities. Proc. Natl. Acad. Sci. USA 1996, 93, 11109–11114. [Google Scholar] [CrossRef]
- Whittles, L.K.; Didelot, X.; White, P.J. Public health impact and cost-effectiveness of gonorrhoea vaccination: An integrated transmission-dynamic health-economic modelling analysis. Lancet Infect. Dis. 2022, 22, 1030–1041. [Google Scholar] [CrossRef]
- STIKO: Aktualisierung der Empfehlungen zur Pneumokokken-Impfung. Epidemiologisches Bulletin 2023. Available online: https://www.rki.de/DE/Aktuelles/Publikationen/Epidemiologisches-Bulletin/2023/39_23.pdf?__blob=publicationFile (accessed on 13 January 2024).
- Garrido, H.M.G.; Schnyder, J.L.; Haydari, B.; Vollaard, A.M.; Tanck, M.W.; de Bree, G.J.; Meek, B.; Grobusch, M.P.; Goorhuis, A. Immunogenicity of the 13-valent pneumococcal conjugate vaccine followed by the 23-valent pneumococcal polysaccharide vaccine in people living with HIV on combination antiretroviral therapy. Int. J. Antimicrob. Agents 2022, 60, 106629. [Google Scholar] [CrossRef]
- Slayter, K.L.; Singer, J.; Lee, T.C.; Kayhty, H.; Schlech, W.F. Immunization against pneumococcal disease in HIV-infected patients: Conjugate versus polysaccharide vaccine before or after reconstitution of the immune system (CTN-147). Int. J. STD AIDS 2013, 24, 227–231. [Google Scholar] [CrossRef]
- Pressemitteilung der Ständigen Impfkommission (STIKO) zur Empfehlung des PCV20-Pneumokokken-Impfstoffs für Erwachsene. Available online: https://www.rki.de/DE/Content/Kommissionen/STIKO/Empfehlungen/PM_2023-09-28.html (accessed on 13 January 2024).
- Essink, B.; Sabharwal, C.; Cannon, K.; Frenck, R.; Lal, H.; Xu, X.; Watson, W. Pivotal Phase 3 Randomized Clinical Trial of the Safety, Tolerability, and Immunogenicity of 20-Valent Pneumococcal Conjugate Vaccine in Adults Aged ≥ 18 Years. Clin. Infect. Dis. 2022, 75, 390–398. [Google Scholar] [CrossRef]
- Belaunzarán-Zamudio, P.F.; García-León, M.L.; Wong-Chew, R.M.; Villasís-Keever, A.; Cuellar-Rodríguez, J.; Mosqueda-Gómez, J.L.; Muñoz-Trejo, T.; Escobedo, K.; Santos, J.I.; Ruiz-Palacios, G.M.; et al. Early loss of measles antibodies after MMR vaccine among HIV-infected adults receiving HAART. Vaccine 2009, 27, 7059–7064. [Google Scholar] [CrossRef] [PubMed]
- Shafran, S.D. Live attenuated herpes zoster vaccine for HIV-infected adults. HIV Med. 2016, 17, 305–310. [Google Scholar] [CrossRef]
- Berkowitz, E.M.; Moyle, G.; Stellbrink, H.J.; Schürmann, D.; Kegg, S.; Stoll, M.; Schneider, S. Safety and immunogenicity of an adjuvanted herpes zoster subunit candidate vaccine in HIV-infected adults: A phase 1/2a randomized, placebo-controlled study. J. Infect. Dis. 2015, 211, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Levin, M.J.; Macgregor, R.R. Safety and immunogenicity of a live attenuated varicella vaccine in VZV-seropositive HIV-infected adults. Hum Vaccines 2010, 6, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, K.L.; Gordon, K.S.; Levin, M.J.; Weinberg, A.; Battaglia, C.; Rodriguez-Barradas, M.C.; Brown, S.T.; Rimland, D.; Justice, A.; Tate, J.; et al. Herpes Zoster and Herpes Zoster Vaccine Rates Among Adults Living With and Without HIV in the Veterans Aging Cohort Study. JAIDS J. Acquir. Immune Defic. Syndr. 2018, 79, 527–533. [Google Scholar] [CrossRef]
- Schwarze-Zander, C.; Draenert, R.; Lehmann, C.; Stecher, M.; Boesecke, C.; Sammet, S.; Wasmuth, J.C.; Seybold, U.; Gillor, D.; Wieland, U.; et al. Measles, mumps, rubella and VZV: Importance of serological testing of vaccine-preventable diseases in young adults living with HIV in Germany. Epidemiol. Infect. 2017, 145, 236–244. [Google Scholar] [CrossRef]
- Zou, J.; Krentz, H.B.; Lang, R.; Beckthold, B.; Fonseca, K.; Gill, M.J. Seropositivity, Risks, and Morbidity From Varicella-Zoster Virus Infections in an Adult PWH Cohort From 2000–2020. Open Forum Infect. Dis. 2022, 9, ofac395. [Google Scholar] [CrossRef]
- Empfehlungen der Ständigen Impf-kommission beim Robert Koch-Institut. 2023. Available online: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2023/Ausgaben/04_23.pdf?__blob=publicationFile#page=8 (accessed on 13 January 2024).
- Brumme, Z.L.; Mwimanzi, F.; Lapointe, H.R.; Cheung, P.K.; Sang, Y.; Duncan, M.C.; Yaseen, F.; Agafitei, O.; Ennis, S.; Ng, K.; et al. Humoral immune responses to COVID-19 vaccination in people living with HIV receiving suppressive antiretroviral therapy. NPJ Vaccines 2022, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Hensley, K.S.; Jongkees, M.J.; Geers, D.; GeurtsvanKessel, C.H.; Mueller, Y.M.; Dalm, V.A.S.H.; Papageorgiou, G.; Steggink, H.; Gorska, A.; Bogers, S.; et al. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines in people living with HIV in the Netherlands: A nationwide prospective cohort study. PLoS Med. 2022, 19, e1003979. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Wieder-Finesod, A.; Litchevsky, V.; Biber, A.; Indenbaum, V.; Olmer, L.; Huppert, A.; Mor, O.; Goldstein, M.; Levin, E.G.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. Clin. Microbiol. Infect. 2021, 27, 1851–1855. [Google Scholar] [CrossRef] [PubMed]
- Liverpool HIV Drug interaction checker. Available online: https://www.hiv-druginteractions.org/checker (accessed on 15 July 2025).
- NIHCOVIDTreatment Guidelines: Special Considerations in People With, H.I.V. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570371/pdf/Bookshelf_NBK570371.pdf (accessed on 15 July 2025).
- Gebre, M.S.; Brito, L.A.; Tostanoski, L.H.; Edwards, D.K.; Carfi, A.; Barouch, D.H. Novel approaches for vaccine development. Cell 2021, 184, 1589–1603. [Google Scholar] [CrossRef]
- Poria, R.; Kala, D.; Nagraik, R.; Dhir, Y.; Dhir, S.; Singh, B.; Kaushik, N.K.; Noorani, S.; Kaushal, A.; Gupta, S. Vaccine development: Current trends and technologies. Life Sci. 2024, 336, 122331. [Google Scholar] [CrossRef]
- CDC RSV. Available online: https://www.cdc.gov/respiratory-viruses/prevention/immunizations.html (accessed on 13 January 2024).
- RSV. Available online: https://www.rki.de/DE/Aktuelles/Publikationen/Epidemiologisches-Bulletin/2024/32_24.pdf?__blob=publicationFile&v=3 (accessed on 13 January 2024).
- Franco-Paredes, C.; Hidron, A.; Tellez, I.; Lesesne, J.; Del Rio, C. HIV infection and travel: Pretravel recommendations and health-related risks. Top HIV Med. 2009, 17, 2–11. [Google Scholar]
- Luchen, C.C.; Mwaba, J.; Ng’ombe, H.; Alabi, P.I.O.; Simuyandi, M.; Chilyabanyama, O.N.; Hatyoka, L.M.; Mubanga, C.; Bosomprah, S.; Chilengi, R.; et al. Effect of HIV status and retinol on immunogenicity to oral cholera vaccine in adult population living in an endemic area of Lukanga Swamps, Zambia. PLoS ONE 2021, 16, e0260552. [Google Scholar] [CrossRef]
- Jilich, D.; Maly, M.; Kosina, P.; Fleischhans, L.; Machala, L. Immunogenicity and safety of rapid scheme vaccination against tick-borne encephalitis in HIV-1 infected persons. Epidemiol. Infect. 2021, 149, e41. [Google Scholar] [CrossRef]
- Mariano, D.; Smith, D.S. Safe Travel Preparation for HIV-Infected Patients. Curr. Infect. Dis. Rep. 2019, 21, 15. [Google Scholar] [CrossRef]
- CDC Yellow Fever. Available online: https://wwwnc.cdc.gov/travel/diseases/yellow-fever (accessed on 13 January 2024).
- Motta, E.; Camacho, L.A.B.; Cunha, M.; de Filippis, A.M.B.; Lima, S.M.B.; Costa, M.; Pedro, L.; Cardoso, S.W.; Cortes, F.H.; Giacoia-Gripp, C.B.; et al. Immunogenicity and reactogenicity of yellow fever vaccine in people with HIV. Aids 2023, 37, 2319–2329. [Google Scholar] [CrossRef]
- Martin, C.; Domingo, C.; Hainaut, M.; Delforge, M.; De Wit, S.; Dauby, N. Seroconversion and persistence of neutralizing antibody response after yellow fever vaccination in patients with perinatally acquired HIV infection. Aids 2023, 37, 341–346. [Google Scholar] [CrossRef]
- CDC Japanese Encephalitis Virus Recommendations. Available online: https://www.cdc.gov/japanese-encephalitis/hcp/vaccine/?CDC_AAref_Val=https://www.cdc.gov/japaneseencephalitis/vaccine/index.html (accessed on 13 January 2024).
- WHO Vaccination Position Papers. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/policies/position-papers (accessed on 13 January 2024).
- Chokephaibulkit, K.; Plipat, N.; Yoksan, S.; Phongsamart, W.; Lappra, K.; Chearskul, P.; Chearskul, S.; Wittawatmongkol, O.; Vanprapar, N. A comparative study of the serological response to Japanese encephalitis vaccine in HIV-infected and uninfected Thai children. Vaccine 2010, 28, 3563–3566. [Google Scholar] [CrossRef]
- Chang, L.; Lim, B.C.W.; Flaherty, G.T.; Torresi, J. Travel vaccination recommendations and infection risk in HIV-positive travellers. J. Travel Med. 2019, 26, taz034. [Google Scholar] [CrossRef]
- BHIVA Vaccination Guidelines. Available online: https://www.bhiva.org/file/NriBJHDVKGwzZ/2015-Vaccination-Guidelines.pdf (accessed on 13 January 2024).
- PEIINFORMATIONSBLATTFÜRFACHKREISEIMVANEX/JYNNEOS. Available online: https://www.pei.de/SharedDocs/Downloads/DE/arzneimittel/fachinformation-jynneos-11-11-2022.pdf?__blob=publicationFile&v=17 (accessed on 13 January 2024).
- O’Shea, J.; Daskalakis, D.; Brooks, J.T. The emergence of mpox as an HIV-related opportunistic infection. Lancet 2023, 401, 1264. [Google Scholar] [CrossRef] [PubMed]
- Deputy, N.P.; Deckert, J.; Chard, A.N.; Sandberg, N.; Moulia, D.L.; Barkley, E.; Dalton, A.F.; Sweet, C.; Cohn, A.C.; Little, D.R.; et al. Vaccine Effectiveness of JYNNEOS against Mpox Disease in the United States. N. Engl. J. Med. 2023, 388, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Zucker, J.; Bell, E.; Flores, J.; Gordon, L.; Mitjà, O.; Suñer, C.; Lemaignen, A.; Jamard, S.; Nozza, S.; et al. Mpox in people with past infection or a complete vaccination course: A global case series. Lancet Infect. Dis. 2024, 24, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Raccagni, A.R.; Diotallevi, S.; Lolatto, R.; Lucente, M.F.; Candela, C.; Gianotti, N.; Trentacapilli, B.; Canetti, D.; Castagna, A.; Nozza, S. Viral blips and virologic failures following mpox vaccination with MVA-BN among people with HIV. Aids 2023, 37, 2365–2369. [Google Scholar] [CrossRef]
- Martín-Iguacel, R.; Pericas, C.; Bruguera, A.; Rosell, G.; Martínez, E.; Díaz, Y.; Alonso, L.; Nomah, D.K.; Blanco, J.L.; Domingo, P.; et al. Mpox: Clinical Outcomes and Impact of Vaccination in People with and without HIV: A Population-Wide Study. Microorganisms 2023, 11, 2701. [Google Scholar] [CrossRef]
- WHO Position Paper on Dengue Vaccines—May 2024. Available online: https://iris.who.int/bitstream/handle/10665/376641/WER9918-eng-fre.pdf?sequence=1 (accessed on 15 July 2025).
- Wilder-Smith, A. Dengue vaccine development: Status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020, 63, 40–44. [Google Scholar] [CrossRef]
- Preston, K.B.; Randolph, T.W. Stability of lyophilized and spray dried vaccine formulations. Adv. Drug Deliv. Rev. 2021, 171, 50–61. [Google Scholar] [CrossRef]
- Kanojia, G.; Willems, G.-J.; Frijlink, H.W.; Kersten, G.F.A.; Soema, P.C.; Amorij, J.-P. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine. Int. J. Pharm. 2016, 511, 1098–1111. [Google Scholar] [CrossRef]
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Dauby et al. 2022 [15] | 103 | - |
| PLWH born outside Europe show a reduced half-life of tetanus toxoid-specific antibodies compared to the general population. This difference may be attributed to factors such as a lower nadir or current CD4+ T cell count and potential under-immunization in their country of origin before migration. Consequently, adhering to the longer intervals recommended for booster vaccinations in the general population may not be appropriate for this specific subgroup of PLWH. |
Nunes et al. 2023 [16] | 91 | 136 |
| Tdap vaccination was both safe and immunogenic. PWHW exhibited diminished humoral immune responses, potentially impacting the vaccine’s efficacy in safeguarding their infants against pertussis when compared to infants born to HIV-negative women. |
Boey et al. 2021 [17] | 196 | 856 |
| Except for tetanus, a significant portion of at-risk individuals remains susceptible to vaccine-preventable diseases such as diphtheria and pertussis. |
Troy et al. 2015 [18] | 231 | - |
| Intradermal administration (not a standard) enables a 60% reduction in the standard dose of Inactivated Polio Vaccine (IPV) without diminishing antibody titers. |
Spina et al. 2018 [19] | 30 | 30 |
| Both groups exhibited good tolerance and developed an immune response following Tdap. Nevertheless, HIV-infected adolescents could benefit from more frequent booster doses. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Tseng et al. 2013 [22] | 140 | 217 |
| The serologic response rates for three and two doses of the HAV vaccine were comparable among PLWH. A higher CD4 count and effective suppression of HIV replication were associated with an increased seroconversion rate following HAV vaccination. |
Jablonowska et al. 2014 [23] | 234 | - |
|
PLWH with elevated CD4 counts demonstrated a sustained response to vaccination, lasting up to 5 years. Individuals with both HIV and HCV coinfection exhibited a less favorable response to vaccination. |
Kourkounti et al. 2013 [24] | 113 | - |
| The effectiveness of vaccination is linked to CD4 T-cell levels. The response to the HAV vaccine in PLWH with a baseline CD4 T-cell count exceeding 200 cells/mm3 is not predicted by the count of other immune cells or the use of antiretroviral therapy. |
Launay et al. 2008 [25] | 99 | - |
| The administration of three doses of the vaccine proved to be safe and resulted in elevated antibody titers. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Bailey et al. 2008 [26] | 503 | - |
| HIV viral load outperformed CD4 count as a predictor of response to HBV vaccination. Nonetheless, neither a low CD4 count nor a high HIV viral load should serve as reason to postpone the vaccination of individuals at high risk. |
Launay et al. 2016 [27] | 437 | - |
| IM40 × 4 regimen of the recombinant HBV vaccine enhanced the long-term immune response in comparison to the standard regimen. |
Launay et al. 2011 [28] | 437 | - |
| In PLWH, both the regimen involving four intramuscular double doses and the regimen with four intradermal low doses demonstrated enhanced serological responses compared to the standard HBV vaccine regimen. |
Piroth et al. 2016 [29] | 54 | - |
| Patients with an isolated anti-HBc profile, lacking an anti-HBs titer exceeding 100 mIU/mL four weeks after a single recall dose of HBV vaccine, should undergo additional vaccination with a reinforced triple double-dose regimen. |
Fonseca et al. 2005 [30] | 210 | - |
| Administering a double dose as the primary series, especially when the viral load is anticipated to be low and CD4 counts are ≥350, ensures an optimal immune response. |
Cornejo-Juárez et al. 2006 [31] | 79 |
| Increasing the dose of the HBV vaccine did not lead to a higher response rate in HIV-infected subjects. The only significant factor associated with the response rate was having a CD4 count ≥ 200 cells/mm3. As a result, the study suggests using this threshold for initiating vaccination in HIV patients. | |
[32] | 67 | - |
| - CpG-adjuvanted vaccine proved to be effective in inducing immunity against HBV in PLWH who failed non-adjuvant recombinant vaccines. |
[33] | 64 | - |
| - CpG-adjuvanted vaccine should be considered for wider application in HBV vaccination for PLWH. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Jimenez et al. 2013 [34] | 226 | - |
| PLWH exhibit significantly lower seroconversion rates to HAV inactivated vaccine vaccination, with responses influenced by CD4 cell count and virologic suppression at the time of vaccination. Recipients of inactivated HAV and recombinant HBV vaccine seem more sensitive to these factors and to the completion of the vaccine series compared to those receiving solely inactivated HAV. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Hidalgo-Tenorio et al. 2021 [45] | 129 | - |
| Nearly all vaccinated individuals exhibited a sustained immune response. The primary protective factor against ≥ HSIL was completing the vaccination regimen more than 6 months prior. |
Boey et al. 2021 [46] | 100 | 171 |
| The nonavalent (9vHPV) vaccine demonstrates high immunogenicity in PLWH, although its efficacy is suboptimal in organ transplant recipients. Nevertheless, the vaccine is deemed safe and well-tolerated in both groups. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Mahdi et al. 2011 [54] | 506 | - |
| In African HIV-infected adults without underlying co-morbidities, TIV vaccination has been found to be safe and effective. Further evaluation of its effectiveness is recommended, especially in severely immunocompromised HIV-infected adults and those with co-morbidities like tuberculosis. |
Pariani et al. 2011 [51] | 49 | 60 |
| The concurrent administration of a single dose of the 2009 pandemic MF59-adjuvanted influenza vaccine with a seasonal vaccine induced a protective immune response in both PLWH and HIV-naive individuals. Individuals previously primed to seasonal influenza in the preceding year exhibited a more robust and persistent antibody response to the 2009 pandemic vaccine. |
Durier et al. 2013 [52] | 309 | - |
| In adults infected with HIV-1, two doses of adjuvanted influenza vaccine elicited a persistent immune response lasting up to 1 year post-vaccination. |
Zhang et al. 2024 [55] | 2436 | - |
| Administration of two vaccine doses resulted in better immunogenicity compared to a single dose. The safety profile was considered acceptable in PWLH. An adjuvant two-dose regime may offer advantages over the conventional schedule. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Siberry et al. 2010 [57] | 319 | - |
| A considerable number of PLWH develop meningococcal immunity naturally. While MCV4 is deemed safe and immunogenic in PLWH, the response rates are comparatively lower than those observed in non-infected youth, especially among individuals with more advanced HIV clinical, immunologic, and virologic status. |
Source | HIV Patients Included | Non- HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Garcia Garrido et al. 2022 [65] | 80 | 40 |
| While IgG levels increased significantly for all 24 vaccine serotypes in both PLWH and controls, only a minority of PLWH achieved seroprotection after PCV13 followed by PPSV23. Poor responders were associated with a CD4 nadir <200 cells/mm3. The DTP vaccine emerges as a potential enhancer of pneumococcal vaccination responses. |
Slayter et al. 2013 [66] | 79 |
| PLWHA displayed enhanced immunological responses to 23-valent pneumococcal polysaccharide (PPV) or pneumococcal heptavalent conjugate vaccine (7PCV) after immune system reconstitution. PLWHA should be vaccinated with pneumococcal vaccines when their CD4 count exceeds 200 cells/mm3. No superiority of recommending conjugate vaccines over polysaccharide vaccines for immunizing PLWH was established. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Belaunzarán-Zamudio et al. 2009 [69] | 26 | 22- |
| The initial immune response to the measles vaccine was comparable between PLWH adults and HIV-naive adults. PLWH exhibited a swift reduction in measles antibodies, despite maintaining a high CD4+ cell count and a sustained cellular proliferative response. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Weinberg et al. 2010 [72] | 67 | 15 |
| The administration of two doses of the live attenuated VZV vaccine was found to be safe in PLWH with CD4 counts greater than or equal to 400 cells/microL, though the immunogenic response was only modest. |
Berkowitz et al. 2015 [71] | 123 | - |
| HZ/su vaccine elicited an immune response and demonstrated a clinically acceptable safety profile in PLWH after 3 doses. |
Source | HIV Patients Included | Non- HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Brumme et al. 2022 [77] | 100 | 152 |
| PLWH who maintain suppressed viral loads and have CD4+ T-cell counts within a healthy range generate robust humoral responses following dual COVID-19 vaccination. Various factors, including age, co-morbidities, the vaccine brand, the longevity of the response, and the emergence of new SARS-CoV-2 variants, will play a role in determining when PLWH might derive additional benefits from supplementary doses. |
Hensley et al. 2022 [78] | 1154 | 440 |
| Following vaccination with BNT162b2 or mRNA-1273, PLWH exhibited lower anti-spike SARS-CoV-2 antibody levels compared to HIV-negative controls. Achieving and sustaining comparable serological responses to HIV-negative controls likely necessitates additional vaccinations. |
Levy et al. 2021 [79] | 143 | 261 |
| The BNT162b2 mRNA vaccine seems to be both immunogenic and safe for PLWH who are on antiretroviral therapy with an unsuppressed CD4 count and suppressed viral load. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Jilich et al. 2021 [88] | 28 | - |
| The study found unsatisfactory immunogenicity, with early protection achieved in only a small proportion of recipients of the rapid vaccination scheme, leading to the recommendation against rapid TBE vaccination for PLWH. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Motta et al. 2023 [91] | 218 | 82 |
| The YF vaccine is considered safe for PLWH with a CD4+ cell count ≥ 200 cells/μL. Immunogenicity of the YF vaccine is compromised in PLWH with high viral load, a low CD4+ cell count, and a low CD4+/CD8+ ratio at the time of vaccination. YF neutralization titers tend to decline over time in PLWH. |
Source | HIV Patients Included | Non-HIV Controls | Immune Response | Authors’ Conclusion |
---|---|---|---|---|
Deputy et al. 2023 [100] | 2193 | 8319 |
| Individuals with Mpox were less likely to have received one or two doses of the Mpox vaccine compared to control patients. The findings support the effectiveness of the Mpox vaccine in preventing Mpox disease, with a two-dose series providing improved protection. |
Raccagni et al. 2023 [102] | 187 | - |
| While uncommon, instances of viral blips and CVFs were observed in PLWH receiving antiretroviral therapy (ART) following MVA-BN vaccination. It is advisable to closely monitor HIV-RNA levels during Mpox vaccination. |
Martín-Iguacel et al. 2023 [103] | 842 | 1280 |
| Intradermal smallpox vaccination with reduced doses remained effective. |
Hazra et al. 2024 [101] | 8 | 29 |
| Neither natural nor vaccine-induced immunity provides complete protection against mpox infection. However, in this small series, both the duration and severity of the disease appear to be reduced. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Würfel, L.M.; Potthoff, A.; Skaletz-Rorowski, A.; Nambiar, S.; Abu Rached, N. Optimizing Immunization Strategies for Individuals Living with HIV: A Review of Essential Vaccines, Vaccine Coverage, and Adherence Factors. Vaccines 2025, 13, 798. https://doi.org/10.3390/vaccines13080798
Würfel LM, Potthoff A, Skaletz-Rorowski A, Nambiar S, Abu Rached N. Optimizing Immunization Strategies for Individuals Living with HIV: A Review of Essential Vaccines, Vaccine Coverage, and Adherence Factors. Vaccines. 2025; 13(8):798. https://doi.org/10.3390/vaccines13080798
Chicago/Turabian StyleWürfel, Lina M., Anja Potthoff, Adriane Skaletz-Rorowski, Sandeep Nambiar, and Nessr Abu Rached. 2025. "Optimizing Immunization Strategies for Individuals Living with HIV: A Review of Essential Vaccines, Vaccine Coverage, and Adherence Factors" Vaccines 13, no. 8: 798. https://doi.org/10.3390/vaccines13080798
APA StyleWürfel, L. M., Potthoff, A., Skaletz-Rorowski, A., Nambiar, S., & Abu Rached, N. (2025). Optimizing Immunization Strategies for Individuals Living with HIV: A Review of Essential Vaccines, Vaccine Coverage, and Adherence Factors. Vaccines, 13(8), 798. https://doi.org/10.3390/vaccines13080798