Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals
2.3. Vaccine Formulations
2.4. Dose Formulations
2.5. Study Design
2.6. Animal Observations and Measurements
2.7. Body Weights and Food Consumption
2.8. Clinical Pathology Sample Collection
2.9. Postmortem Evaluations
2.10. Evaluation of 6-AmHap-Specific Antibody Titer
2.11. Quality Assurance
2.12. Data Analysis
3. Results
3.1. Clinical Findings of Systemic Administration of TT-6-AmHap Vaccine
3.2. TT-6-AmHap-Related Effects on Clinical Pathology Parameters
3.3. TT-6-AmHap-Related Effects on Organ-Specific Toxicity
3.4. Immunogenicity of TT-6-AmHap Vaccine
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D-PHAD® | Monophosphoryl 3-Deacyl Lipid A (Synthetic)Pat No. 9,241,988 |
6-AmHap | N-((7S,7aR,12bS)-7-acetamido-3-methyl-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro [3,2-e]isoquinolin-9-yl)-3-(tritylthio)propanamide) |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
ALF43 | Army Liposome Formulation with 43% cholesterol |
BSA | Bovine serum albumin |
cGMP | Current Good Manufacturing Practice |
FDA | Food and Drug Administration |
GLP | Good Laboratory Practice |
HRP | Horseradish Peroxidase |
IgG | Immunoglobulin |
MPLA | Monophosphoryl Lipid A |
OUD | Opioid use disorder |
SD | Study days |
S.E.M. | Standard Error of the Mean |
TT | tetanus toxoid |
References
- Ahmad, F.B.; Cisewski, J.A.; Rossen, L.M.; Sutton, P. Provisional Drug Overdose Death Counts. National Center for Health Statistics. 2025. Available online: https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm (accessed on 24 June 2025).
- Volkow, N.D.; Blanco, C. The Changing Opioid Crisis: Development, Challenges and Opportunities. Mol. Psychiatry 2021, 26, 218–233. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Committee on Medication-Assisted Treatment for Opioid Use Disorder. In Medications for Opioid Use Disorder Save Lives; Leshner, A.I., Mancher, M., Eds.; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48648-4. [Google Scholar]
- Tuncturk, M.; Kushwaha, S.; Heider, R.M.; Oesterle, T.; Weinshilboum, R.; Ho, M.F. The Development of Opioid Vaccines as a Novel Strategy for the Treatment of Opioid Use Disorder and Overdose Prevention. Int. J. Neuropsychopharmacol. 2025, 28, pyaf005. [Google Scholar] [CrossRef]
- Janda, K.D.; Treweek, J.B. Vaccines Targeting Drugs of Abuse: Is the Glass Half-Empty or Half-Full? Nat. Rev. Immunol. 2012, 12, 67–72. [Google Scholar] [CrossRef]
- Clementi, M.E.; Marini, S.; Condò, S.G.; Giardina, B. Antibodies against Small Molecules. Ann. Ist. Super. Sanita 1991, 27, 139–143. [Google Scholar]
- Landsteiner, K.; Jacobs, J. Studies on The Sensitization of Animals with Simple Chemical Compounds. J. Exp. Med. 1935, 61, 643–656. [Google Scholar] [CrossRef]
- Landsteiner, K.; van der Scheer, J. On the Serological Specificity of Peptides. II. J. Exp. Med. 1934, 59, 769–780. [Google Scholar] [CrossRef]
- Komla, E.; Torres, O.B.; Jalah, R.; Sulima, A.; Beck, Z.; Alving, C.R.; Jacobson, A.E.; Rice, K.C.; Matyas, G.R. Effect of Preexisting Immunity to Tetanus Toxoid on the Efficacy of Tetanus Toxoid-Conjugated Heroin Vaccine in Mice. Vaccines 2021, 9, 573. [Google Scholar] [CrossRef]
- Jalah, R.; Torres, O.B.; Mayorov, A.V.; Li, F.; Antoline, J.F.G.; Jacobson, A.E.; Rice, K.C.; Deschamps, J.R.; Beck, Z.; Alving, C.R.; et al. Efficacy, but Not Antibody Titer or Affinity, of a Heroin Hapten Conjugate Vaccine Correlates with Increasing Hapten Densities on Tetanus Toxoid, but Not on CRM 197 Carriers. Bioconjug. Chem. 2015, 26, 1041–1053. [Google Scholar] [CrossRef]
- Baruffaldi, F.; Kelcher, A.H.; Laudenbach, M.; Gradinati, V.; Limkar, A.; Roslawski, M.; Birnbaum, A.; Lees, A.; Hassler, C.; Runyon, S.; et al. Preclinical Efficacy and Characterization of Candidate Vaccines for Treatment of Opioid Use Disorders Using Clinically Viable Carrier Proteins. Mol. Pharm. 2018, 15, 4947–4962. [Google Scholar] [CrossRef]
- Alving, C.R.; Matyas, G.R.; Torres, O.; Jalah, R.; Beck, Z. Adjuvants for Vaccines to Drugs of Abuse and Addiction. Vaccine 2014, 32, 5382–5389. [Google Scholar] [CrossRef]
- Beck, Z.; Matyas, G.R.; Jalah, R.; Rao, M.; Polonis, V.R.; Alving, C.R. Differential Immune Responses to HIV-1 Envelope Protein Induced by Liposomal Adjuvant Formulations Containing Monophosphoryl Lipid A with or without QS21. Vaccine 2015, 33, 5578–5587. [Google Scholar] [CrossRef]
- Sulima, A.; Jalah, R.; Antoline, J.F.G.; Torres, O.B.; Imler, G.H.; Deschamps, J.R.; Beck, Z.; Alving, C.R.; Jacobson, A.E.; Rice, K.C.; et al. A Stable Heroin Analogue That Can Serve as a Vaccine Hapten to Induce Antibodies That Block the Effects of Heroin and Its Metabolites in Rodents and That Cross-React Immunologically with Related Drugs of Abuse. J. Med. Chem. 2018, 61, 329–343. [Google Scholar] [CrossRef]
- Booy, R.; Heath, P.T.; Slack, M.P.; Begg, N.; Richard Moxon, E. Vaccine Failures after Primary Immunisation with Haemophilus Influenzae Type-b Conjugate Vaccine without Booster. Lancet 1997, 349, 1197–1202. [Google Scholar] [CrossRef]
- Lieberman, J.M.; Greenberg, D.P.; Wong, V.K.; Partridge, S.; Chang, S.-J.; Chiu, C.-Y.; Ward, J.I. Effect of Neonatal Immunization with Diphtheria and Tetanus Toxoids on Antibody Responses to Haemophilus Influenzae Type b Conjugate Vaccines. J. Pediatr. 1995, 126, 198–205. [Google Scholar] [CrossRef]
- Barington, T.; Kristensen, K.; Henrichsen, J.; Heilmann, C. Influence of Prevaccination Immunity on the Human B-Lymphocyte Response to a Haemophilus Influenzae Type b Conjugate Vaccine. Infect. Immun. 1991, 59, 1057–1064. [Google Scholar] [CrossRef]
- Barington, T.; Skettrup, M.; Juul, L.; Heilmann, C. Non-Epitope-Specific Suppression of the Antibody Response to Haemophilus Influenzae Type b Conjugate Vaccines by Preimmunization with Vaccine Components. Infect. Immun. 1993, 61, 432–438. [Google Scholar] [CrossRef]
- Barrientos, R.C.; Whalen, C.; Torres, O.B.; Sulima, A.; Bow, E.W.; Komla, E.; Beck, Z.; Jacobson, A.E.; Rice, K.C.; Matyas, G.R. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug. Chem. 2021, 32, 2295–2306. [Google Scholar] [CrossRef]
- Torres, O.B.; Jalah, R.; Rice, K.C.; Li, F.; Antoline, J.F.G.; Iyer, M.R.; Jacobson, A.E.; Boutaghou, M.N.; Alving, C.R.; Matyas, G.R. Characterization and Optimization of Heroin Hapten-BSA Conjugates: Method Development for the Synthesis of Reproducible Hapten-Based Vaccines. Anal. Bioanal. Chem. 2014, 406, 5927–5937. [Google Scholar] [CrossRef]
- Ban, B.; Barrientos, R.C.; Oertel, T.; Komla, E.; Whalen, C.; Sopko, M.; You, Y.; Banerjee, P.; Sulima, A.; Jacobson, A.E.; et al. Novel Chimeric Monoclonal Antibodies That Block Fentanyl Effects and Alter Fentanyl Biodistribution in Mice. MAbs 2021, 13, 1991552. [Google Scholar] [CrossRef]
- Pravetoni, M.; Le Naour, M.; Harmon, T.M.; Tucker, A.M.; Portoghese, P.S.; Pentel, P.R. An Oxycodone Conjugate Vaccine Elicits Drug-Specific Antibodies That Reduce Oxycodone Distribution to Brain and Hot-Plate Analgesia. J. Pharmacol. Exp. Ther. 2012, 341, 225–232. [Google Scholar] [CrossRef]
- Raleigh, M.D.; Baruffaldi, F.; Peterson, S.J.; Le Naour, M.; Harmon, T.M.; Vigliaturo, J.R.; Pentel, P.R.; Pravetoni, M. A Fentanyl Vaccine Alters Fentanyl Distribution and Protects against Fentanyl-Induced Effects in Mice and Rats. J. Pharmacol. Exp. Ther. 2019, 368, 282–291. [Google Scholar] [CrossRef]
- Tenney, R.D.; Blake, S.; Bremer, P.T.; Zhou, B.; Hwang, C.S.; Poklis, J.L.; Janda, K.D.; Banks, M.L. Vaccine Blunts Fentanyl Potency in Male Rhesus Monkeys. Neuropharmacology 2019, 158, 107730. [Google Scholar] [CrossRef]
- Townsend, E.A.; Blake, S.; Faunce, K.E.; Hwang, C.S.; Natori, Y.; Zhou, B.; Bremer, P.T.; Janda, K.D.; Banks, M.L. Conjugate Vaccine Produces Long-Lasting Attenuation of Fentanyl vs. Food Choice and Blocks Expression of Opioid Withdrawal-Induced Increases in Fentanyl Choice in Rats. Neuropsychopharmacology 2019, 44, 1681–1689. [Google Scholar] [CrossRef]
- Bremer, P.T.; Schlosburg, J.E.; Banks, M.L.; Steele, F.F.; Zhou, B.; Poklis, J.L.; Janda, K.D. Development of a Clinically Viable Heroin Vaccine. J. Am. Chem. Soc. 2017, 139, 8601–8611. [Google Scholar] [CrossRef]
- Hamid, F.A.; Marker, C.L.; Raleigh, M.D.; Khaimraj, A.; Winston, S.; Pentel, P.R.; Pravetoni, M. Pre-Clinical Safety and Toxicology Profile of a Candidate Vaccine to Treat Oxycodone Use Disorder. Vaccine 2022, 40, 3244–3252. [Google Scholar] [CrossRef]
- Matyas, G.R.; Muderhwa, J.M.; Alving, C.R. Oil-in-Water Liposomal Emulsions for Vaccine Delivery. Methods Enzymol. 2003, 373, 34–50. [Google Scholar] [CrossRef]
- Beck, Z.; Torres, O.B.; Matyas, G.R.; Lanar, D.E.; Alving, C.R. Immune Response to Antigen Adsorbed to Aluminum Hydroxide Particles: Effects of Co-Adsorption of ALF or ALFQ Adjuvant to the Aluminum-Antigen Complex. J. Control. Release 2018, 275, 12–19. [Google Scholar] [CrossRef]
- Park, S.J.; Jang, M.S.; Lim, K.H.; Seo, J.W.; Im, W.J.; Han, K.H.; Kim, S.E.; Jang, E.; Park, D.; Kim, Y.B. Preclinical Evaluation of General Toxicity and Safety Pharmacology of a Receptor-Binding Domain-Based COVID-19 Subunit Vaccine in Various Animal Models. Arch. Toxicol. 2023, 97, 2429–2440. [Google Scholar] [CrossRef]
- Yang, H.; Pan, W.; Chen, G.; Huang, E.; Lu, Q.; Chen, Y.; Chen, Y.; Yang, Z.; Wen, L.; Zhang, S.; et al. Preclinical Toxicity and Immunogenicity of a COVID-19 Vaccine (ZF2001) in Cynomolgus Monkeys. Vaccines 2022, 10, 2080. [Google Scholar] [CrossRef]
- Suzumura, Y. Importance of Examining Incidentality in Vaccine Safety Assessment. Vaccines 2024, 12, 555. [Google Scholar] [CrossRef]
- Alving, C.R.; Peachman, K.K.; Rao, M.; Reed, S.G. Adjuvants for Human Vaccines. Curr. Opin. Immunol. 2012, 24, 310–315. [Google Scholar] [CrossRef]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key Roles of Adjuvants in Modern Vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef]
- Akbarali, H.I.; Dewey, W.L. Gastrointestinal Motility, Dysbiosis and Opioid-Induced Tolerance: Is There a Link? Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 323–324. [Google Scholar] [CrossRef]
- Chan, L.-N. Opioid Analgesics and the Gastrointestinal Tract. Pract. Gastroenterol. 2008, 37–50. [Google Scholar]
- Ramot, Y.; Kronfeld, N.; Ophir, Y.; Ezov, N.; Friedman, S.; Saloheimo, M.; Vitikainen, M.; Ben-Artzi, H.; Avigdor, A.; Tchelet, R.; et al. Toxicity and Local Tolerance of a Novel Spike Protein RBD Vaccine Against SARS-CoV-2, Produced Using the C1 Thermothelomyces heterothallica Protein Expression Platform. Toxicol. Pathol. 2022, 50, 294–307. [Google Scholar] [CrossRef]
- Michael, B.; Yano, B.; Sellers, R.S.; Perry, R.; Morton, D.; Roome, N.; Johnson, J.K.; Schafer, K.; Pitsch, S. Evaluation of Organ Weights for Rodent and Non-Rodent Toxicity Studies: A Review of Regulatory Guidelines and a Survey of Current Practices. Toxicol. Pathol. 2007, 35, 742–750. [Google Scholar] [CrossRef]
- Mezencev, R.; Feshuk, M.; Kolaczkowski, L.; Peterson, G.C.; Zhao, Q.J.; Watford, S.; Weaver, J.A. The Association between Histopathologic Effects and Liver Weight Changes Induced in Mice and Rats by Chemical Exposures: An Analysis of the Data from Toxicity Reference Database (ToxRefDB). Toxicol. Sci. 2024, 200, 404–413. [Google Scholar] [CrossRef]
- Sellers, R.S.; Morton, D.; Michael, B.; Roome, N.; Johnson, J.K.; Yano, B.L.; Perry, R.; Schafer, K. Society of Toxicologic Pathology Position Paper: Organ Weight Recommendations for Toxicology Studies. Toxicol. Pathol. 2007, 35, 751–755. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, W.; Tong, X.; Liu, W.; Zeng, X.; Duan, X.; Wu, H.; Wang, L.; Huang, Z.; Tang, X.; et al. Non-Clinical Immunogenicity, Biodistribution and Toxicology Evaluation of a Chimpanzee Adenovirus-Based COVID-19 Vaccine in Rat and Rhesus Macaque. Arch. Toxicol. 2022, 96, 1437–1453. [Google Scholar] [CrossRef]
- Rohde, C.M.; Lindemann, C.; Giovanelli, M.; Sellers, R.S.; Diekmann, J.; Choudhary, S.; Ramaiah, L.; Vogel, A.B.; Chervona, Y.; Muik, A.; et al. Toxicological Assessments of a Pandemic COVID-19 Vaccine—Demonstrating the Suitability of a Platform Approach for MRNA Vaccines. Vaccines 2023, 11, 417. [Google Scholar] [CrossRef]
- Nurpeisova, A.; Khairullin, B.; Abitaev, R.; Shorayeva, K.; Jekebekov, K.; Kalimolda, E.; Kerimbayev, A.; Akylbayeva, K.; Abay, Z.; Myrzakhmetova, B.; et al. Safety and Immunogenicity of the First Kazakh Inactivated Vaccine for COVID-19. Hum. Vaccines Immunother. 2022, 18, 2087412. [Google Scholar] [CrossRef]
- Tusé, D.; Malm, M.; Tamminen, K.; Diessner, A.; Thieme, F.; Jarczowski, F.; Blazevic, V.; Klimyuk, V. Safety and Immunogenicity Studies in Animal Models Support Clinical Development of a Bivalent Norovirus-like Particle Vaccine Produced in Plants. Vaccine 2022, 40, 977–987. [Google Scholar] [CrossRef]
- Plotkin, S.A. Vaccines, Vaccination, and Vaccinology. J. Infect. Dis. 2003, 187, 1349–1359. [Google Scholar] [CrossRef]
- Plotkin, S.A. Correlates of Vaccine-Induced Immunity. Clin. Infect. Dis. 2008, 47, 401–409. [Google Scholar] [CrossRef]
- Sabato, B.; Augusto, P.S.d.A.; Pereira, R.L.G.; Esteves, F.C.B.; Caligiorne, S.M.; Assis, B.R.D.; Marcelino, S.A.C.; Santo, L.P.D.E.; dos Reis, K.D.; Neto, L.D.S.; et al. Safety and Immunogenicity of the Anti-Cocaine Vaccine UFMG-VAC-V4N2 in a Non-Human Primate Model. Vaccine 2023, 41, 2127–2136. [Google Scholar] [CrossRef]
- Kosten, T.R.; Rosen, M.; Bond, J.; Settles, M.; Roberts, J.S.C.; Shields, J.; Jack, L.; Fox, B. Human Therapeutic Cocaine Vaccine: Safety and Immunogenicity. Vaccine 2002, 20, 1196–1204. [Google Scholar] [CrossRef]
- Maurer, P.; Jennings, G.T.; Willers, J.; Rohner, F.; Lindman, Y.; Roubicek, K.; Renner, W.A.; Müller, P.; Bachmann, M.F. A Therapeutic Vaccine for Nicotine Dependence: Preclinical Efficacy, and Phase I Safety and Immunogenicity. Eur. J. Immunol. 2005, 35, 2031–2040. [Google Scholar] [CrossRef]
- Hoogsteder, P.H.; Kotz, D.; Van Spiegel, P.I.; Viechtbauer, W.; Brauer, R.; Kessler, P.D.; Kalnik, M.W.; Fahim, R.E.; Van Schayck, O.C. The Efficacy and Safety of a Nicotine Conjugate Vaccine (NicVAX®) or Placebo Co-Administered with Varenicline (Champix®) for Smoking Cessation: Study Protocol of a Phase IIb, Double Blind, Randomized, Placebo Controlled Trial. BMC Public Health 2012, 12, 1052. [Google Scholar] [CrossRef]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex Differences in Vaccine-Induced Humoral Immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef]
- St Clair, L.A.; Chaulagain, S.; Klein, S.L.; Benn, C.S.; Flanagan, K.L. Sex-Differential and Non-Specific Effects of Vaccines Over the Life Course. In Current Topics in Microbiology and Immunology; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2023; Volume 441, pp. 225–251. [Google Scholar]
- Klein, S.L.; Marriott, I.; Fish, E.N. Sex-Based Differences in Immune Function and Responses to Vaccination. Trans. R. Soc. Trop. Med. Hyg. 2014, 109, 9–15. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Ortona, E.; Pierdominici, M.; Rider, V. Editorial: Sex Hormones and Gender Differences in Immune Responses. Front. Immunol. 2019, 10, 1076. [Google Scholar] [CrossRef]
- Richards, R.L.; Hayre, M.D.; Hockmeyer, W.T.; Alving, C.R. Liposomes, Lipid A, and Aluminium Hydroxide Enhance the Immune Response to a Synthetic Malaria Sporozoite Antigen. Infect. Immun. 1988, 56, 682–686. [Google Scholar] [CrossRef]
- Richards, R.L.; Alving, C.R.; Wassef, N.M. Liposomal Subunit Vaccines: Effects of Lipid A and Aluminum Hydroxide on Immunogenicity. J. Pharm. Sci. 1996, 85, 1286–1289. [Google Scholar] [CrossRef]
Group | Treatment | Dose Level (μg) | Dose Volume (mL) | Number of Animals | |||
---|---|---|---|---|---|---|---|
Terminal Phase | Recovery Phase | ||||||
Males | Females | Males | Females | ||||
1 | Vehicle/Control a | 0 | 0.5 | 5 | 5 | 5 | 5 |
2 | TT-6-AmHap | 96 | 0.5 | 5 | 5 | 5 | 5 |
3 | TT-6-AmHap +ALF43 +Alhydrogel® | 96 +171 b +527 c | 0.5 | 5 | 5 | 5 | 5 |
Dermal Draize Observations | Physical Examinations b | Cage Side Observations c | Ophthalmology Examinations d | ||||||
---|---|---|---|---|---|---|---|---|---|
Injection Site | Clinical Sign | ||||||||
Group # | Sex | N | Normal a | Abrasions | Discolored Urine | Urine Stain | Few Feces | Soft Feces | Ocular Lesions |
1 | M | 10 | 8 | 2 | 0 | 0 | 1 | 1 | 0 |
2 | M | 10 | 8 | 1 | 2 | 1 | 4 | 0 | 0 |
3 | M | 10 | 9 | 2 | 0 | 0 | 6 | 1 | 0 |
1 | F | 10 | 10 | 0 | 0 | 0 | 2 | 0 | 0 |
2 | F | 10 | 7 | 0 | 0 | 0 | 2 | 0 | 0 |
3 | F | 10 | 9 | 0 | 0 | 0 | 5 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komla, E.; Abucayon, E.G.; Godin, C.S.; Sulima, A.; Jacobson, A.E.; Rice, K.C.; Matyas, G.R. Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine. Vaccines 2025, 13, 792. https://doi.org/10.3390/vaccines13080792
Komla E, Abucayon EG, Godin CS, Sulima A, Jacobson AE, Rice KC, Matyas GR. Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine. Vaccines. 2025; 13(8):792. https://doi.org/10.3390/vaccines13080792
Chicago/Turabian StyleKomla, Essie, Erwin G. Abucayon, C. Steven Godin, Agnieszka Sulima, Arthur E. Jacobson, Kenner C. Rice, and Gary R. Matyas. 2025. "Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine" Vaccines 13, no. 8: 792. https://doi.org/10.3390/vaccines13080792
APA StyleKomla, E., Abucayon, E. G., Godin, C. S., Sulima, A., Jacobson, A. E., Rice, K. C., & Matyas, G. R. (2025). Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine. Vaccines, 13(8), 792. https://doi.org/10.3390/vaccines13080792