Insect-Specific Flaviviruses Have Potential Applications as a Scaffold for Pathogenic Flavivirus Vaccines
Abstract
1. Introduction
2. Pathogenic Flavivirus Severely Impacts Human Health
3. Biological Characteristics of ISFVs
4. Host Restriction Factors of ISFVs
4.1. Viral Characteristic Limitations
4.2. Host–Virus Interactions Limitation
5. ISFVs Have the Potential to Be Used as a Scaffold for Pathogenic Flavivirus Vaccines
5.1. Constructing a Chimeric Flavivirus Vaccine Candidate Strain Using BinJV as the Scaffold
5.2. Construction of a Chimeric Flavivirus Vaccine Candidate with CYV/CHAOV as the Scaffold
5.3. Construction of a Chimeric Yellow Fever Vaccine Candidate Strain Using ARPV as the Scaffold
6. The Advantages and Disadvantages of Insect-Specific Flavivirus as the Scaffold of Pathogenic Flavivirus Vaccines
7. Discussion and Prospects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bello, M.B.; Alsaadi, A.; Naeem, A.; Almahboub, S.A.; Bosaeed, M.; Aljedani, S.S. Development of nucleic acid-based vaccines against dengue and other mosquito-borne flaviviruses: The past, present, and future. Front. Immunol. 2024, 15, 1475886. [Google Scholar] [CrossRef]
- Dutta, S.K.; Langenburg, T. A Perspective on Current Flavivirus Vaccine Development: A Brief Review. Viruses 2023, 15, 860. [Google Scholar] [CrossRef]
- Cannac, M.; Nisole, S. TRIMming down Flavivirus Infections. Viruses 2024, 16, 1262. [Google Scholar] [CrossRef] [PubMed]
- Zoladek, J.; Nisole, S. Mosquito-borne flaviviruses and type I interferon: Catch me if you can! Front. Microbiol. 2023, 14, 1257024. [Google Scholar] [CrossRef]
- Chan, K.R.; Ismail, A.A.; Thergarajan, G.; Raju, C.S.; Yam, H.C.; Rishya, M.; Sekaran, S.D. Serological cross-reactivity among common flaviviruses. Front. Cell. Infect. Microbiol. 2022, 12, 975398. [Google Scholar] [CrossRef]
- Douam, F.; Ploss, A. Yellow Fever Virus: Knowledge Gaps Impeding the Fight Against an Old Foe. Trends Microbiol. 2018, 26, 913–928. [Google Scholar] [CrossRef]
- Malik, S.; Ahsan, O.; Mumtaz, H.; Tahir Khan, M.; Sah, R.; Waheed, Y. Tracing down the Updates on Dengue Virus-Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines 2023, 11, 1328. [Google Scholar] [CrossRef]
- Wang, H.-J.; Guo, Y.; He, M.-J.; Liu, Z.-Y.; Ye, Q.; Huang, X.-Y.; Deng, Y.-Q.; Li, X.-F.; Qin, C.-F.; Zhang, L. Development of a Bicistronic Yellow Fever Live Attenuated Vaccine with Reduced Neurovirulence and Viscerotropism. Microbiol. Spectr. 2022, 10, e0224622. [Google Scholar] [CrossRef]
- Wang, C.; Peng, X.-X.; Li, H. Fructose potentiates the protective efficiency of live Edwardsiella tarda cell vaccine. Front. Immunol. 2023, 14, 1170166. [Google Scholar] [CrossRef]
- Porier, D.L.; Adam, A.; Kang, L.; Michalak, P.; Tupik, J.; Santos, M.A.; Tanelus, M.; López, K.; Auguste, D.I.; Lee, C.; et al. Humoral and T-cell-mediated responses to an insect-specific flavivirus-based Zika virus vaccine candidate. PLoS Pathog. 2024, 20, e1012566. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Li, N.; Zhang, Z.-R.; Deng, C.-L.; Xia, H.; Ye, H.-Q.; Yuan, Z.-M.; Zhang, B. A Chimeric Classical Insect-Specific Flavivirus Provides Complete Protection Against West Nile Virus Lethal Challenge in Mice. J. Infect. Dis. 2024, 229, 43–53. [Google Scholar] [CrossRef]
- Hall, R.A.; Nguyen, W.; Khromykh, A.A.; Suhrbier, A. Insect-specific virus platforms for arbovirus vaccine development. Front. Immunol. 2025, 16, 1521104. [Google Scholar] [CrossRef]
- Fernandez-Garcia, M.D.; Mazzon, M.; Jacobs, M.; Amara, A. Pathogenesis of flavivirus infections: Using and abusing the host cell. Cell Host Microbe 2009, 5, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Moureau, G.; Cook, S.; Lemey, P.; Nougairede, A.; Forrester, N.L.; Khasnatinov, M.; Charrel, R.N.; Firth, A.E.; Gould, E.A.; De Lamballerie, X. New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences. PLoS ONE 2015, 10, e0117849. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, R.J.; Barrett, A.D.T.; Desilva, A.M.; Harris, E.; Kramer, L.D.; Montgomery, R.R.; Pierson, T.C.; Sette, A.; Diamond, M.S. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J. Infect. Dis. 2023, 228 (Suppl. 6), S398–S413. [Google Scholar] [CrossRef]
- Hobson-Peters, J.; Harrison, J.J.; Watterson, D.; Hazlewood, J.E.; Vet, L.J.; Newton, N.D.; Warrilow, D.; Colmant, A.M.G.; Taylor, C.; Huang, B.; et al. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci. Transl. Med. 2019, 11, eaax7888. [Google Scholar] [CrossRef] [PubMed]
- Shanshin, D.V.; Borisevich, S.S.; Bondar, A.A.; Porozov, Y.B.; Rukhlova, E.A.; Protopopova, E.V.; Ushkalenko, N.D.; Loktev, V.B.; Chapoval, A.I.; Ilyichev, A.A.; et al. Can Modern Molecular Modeling Methods Help Find the Area of Potential Vulnerability of Flaviviruses? Int. J. Mol. Sci. 2022, 23, 7721. [Google Scholar] [CrossRef]
- van Leur, S.W.; Heunis, T.; Munnur, D.; Sanyal, S. Pathogenesis and virulence of flavivirus infections. Virulence 2021, 12, 2814–2838. [Google Scholar] [CrossRef]
- Dobrzyńska, M.; Moniuszko-Malinowska, A.; Skrzydlewska, E. Metabolic response to CNS infection with flaviviruses. J. Neuroinflamm. 2023, 20, 218. [Google Scholar] [CrossRef]
- Cody, S.G.; Adam, A.; Siniavin, A.; Kang, S.S.; Wang, T. Flaviviruses—Induced Neurological Sequelae. Pathogens 2024, 14, 22. [Google Scholar] [CrossRef]
- Thomas, S.J.; Barrett, A. Zika vaccine pre-clinical and clinical data review with perspectives on the future development. Hum. Vaccines Immunother. 2020, 16, 2524–2536. [Google Scholar] [CrossRef]
- Tham, H.-W.; Balasubramaniam, V.; Ooi, M.K.; Chew, M.-F. Viral Determinants and Vector Competence of Zika Virus Transmission. Front. Microbiol. 2018, 9, 1040. [Google Scholar] [CrossRef]
- Pandit, P.S.; Doyle, M.M.; Smart, K.M.; Young, C.C.W.; Drape, G.W.; Johnson, C.K. Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat. Commun. 2018, 9, 5425. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Qi, Z.; Qian, X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023, 15, 813. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Cao, S.; Wang, X.; Zhou, Y.; Yan, W.; Gu, X.; Wu, T.-C.; Pang, X. Evaluation of Vertebrate-Specific Replication-Defective Zika Virus, a Novel Single-Cycle Arbovirus Vaccine, in a Mouse Model. Vaccines 2021, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Ang, C.; Ang, A.T.Y.; Yam, J.; Lee, R.X.; Lim, M.J.; Loh, Z.Y.; Torno, M.; Hakim, L.; Wong, J.C.C.; Harrison, J.J.; et al. Spatiotemporal prevalence and characterization of the lineage I insect-specific flavivirus, Quang Binh virus, isolated from Culex gelidus mosquitoes in Singapore. J. Gen. Virol. 2025, 106, 002105. [Google Scholar] [CrossRef]
- Querec, T.; Bennouna, S.; Alkan, S.; Laouar, Y.; Gorden, K.; Flavell, R.; Akira, S.; Ahmed, R.; Pulendran, B. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 2006, 203, 413–424. [Google Scholar] [CrossRef]
- Angelin, M.; Sjölin, J.; Kahn, F.; Hedberg, A.L.; Rosdahl, A.; Skorup, P.; Werner, S.; Woxenius, S.; Askling, H.H. Qdenga(R)—A promising dengue fever vaccine; can it be recommended to non-immune travelers? Travel Med. Infect. Dis. 2023, 54, 102598. [Google Scholar] [CrossRef]
- Tully, D.; Griffiths, C.L. Dengvaxia: The world’s first vaccine for prevention of secondary dengue. Ther. Adv. Vaccines Immunother. 2021, 9, 25151355211015839. [Google Scholar] [CrossRef]
- Yu, Y. Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine 2010, 28, 3635–3641. [Google Scholar] [CrossRef]
- Hegde, N.R.; Gore, M.M. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum. Vaccines Immunother. 2017, 13, 1320–1337. [Google Scholar] [CrossRef]
- Theiler, M.; Smith, H.H. The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937, 65, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Lee, C.K.; Julander, J.G.; Brown, A.; Beasley, D.W.; Watts, D.M.; Hayman, E.; Guertin, P.; Makowiecki, J.; Crowell, J.; et al. Inactivated yellow fever 17D vaccine: Development and nonclinical safety, immunogenicity and protective activity. Vaccine 2010, 28, 3827–3840. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Gandolfi, F.; Estofolete, C.F.; Wakai, M.C.; Negri, A.F.; Barcelos, M.D.; Vasilakis, N.; Nogueira, M.L. Yellow Fever Vaccine-Related Neurotropic Disease in Brazil Following Immunization with 17DD. Vaccines 2023, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- de Menezes Martins, R.; da Luz Fernandes Leal, M.; Homma, A. Serious adverse events associated with yellow fever vaccine. Hum. Vaccin. Immunother. 2015, 11, 2183–2187. [Google Scholar] [CrossRef]
- Martins, R.d.M.; Pavão, A.L.B.; de Oliveira, P.M.N.; dos Santos, P.R.G.; Carvalho, S.M.D.; Mohrdieck, R.; Fernandes, A.R.; Sato, H.K.; de Figueiredo, P.M.; Doellinger, V.d.R.v.; et al. Adverse events following yellow fever immunization: Report and analysis of 67 neurological cases in Brazil. Vaccine 2014, 32, 6676–6682. [Google Scholar] [CrossRef]
- Yang, J.; Yang, H.; Li, Z.; Wang, W.; Lin, H.; Liu, L.; Ni, Q.; Liu, X.; Zeng, X.; Wu, Y.; et al. Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain. Viruses 2017, 9, 20. [Google Scholar] [CrossRef]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile virus live-attenuated vaccine: Preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef]
- Monath, T.P.; McCarthy, K.; Bedford, P.; Johnson, C.T.; Nichols, R.; Yoksan, S.; Marchesani, R.; Knauber, M.; Wells, K.H.; Arroyo, J.; et al. Clinical proof of principle for ChimeriVax: Recombinant live, attenuated vaccines against flavivirus infections. Vaccine 2002, 20, 1004–1018. [Google Scholar] [CrossRef]
- Stollar, V.; Thomas, V.L. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 1975, 64, 367–377. [Google Scholar] [CrossRef]
- Cammisa-Parks, H.; Cisar, L.A.; Kane, A.; Stollar, V. The complete nucleotide sequence of cell fusing agent (CFA): Homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 1992, 189, 511–524. [Google Scholar] [CrossRef]
- Tabata, K.; Itakura, Y.; Toba, S.; Uemura, K.; Kishimoto, M.; Sasaki, M.; Harrison, J.J.; Sato, A.; Hall, W.W.; Hall, R.A.; et al. Serological characterization of lineage II insect-specific flaviviruses compared with pathogenic mosquito-borne flaviviruses. Biochem. Biophys. Res. Commun. 2022, 616, 115–121. [Google Scholar] [CrossRef]
- Torres, F.J.; Parry, R.; Hugo, L.E.; Slonchak, A.; Newton, N.D.; Vet, L.J.; Modhiran, N.; Pullinger, B.; Wang, X.; Potter, J.; et al. Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses 2022, 14, 1501. [Google Scholar] [CrossRef]
- Lutomiah, J.J.L.; Mwandawiro, C.; Magambo, J.; Sang, R.C. Infection and vertical transmission of Kamiti river virus in laboratory bred Aedes aegypti mosquitoes. J. Insect Sci. 2007, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Saiyasombat, R.; Bolling, B.G.; Brault, A.C.; Bartholomay, L.C.; Blitvich, B.J. Evidence of Efficient Transovarial Transmission of Culex Flavivirus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 2011, 48, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.G.; Eisen, L.; Moore, C.G.; Blair, C.D. Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. Am. J. Trop. Med. Hyg. 2011, 85, 169–177. [Google Scholar] [CrossRef]
- Halbach, R.; Junglen, S.; van Rij, R.P. Mosquito-specific and mosquito-borne viruses: Evolution, infection, and host defense. Curr. Opin. Insect Sci. 2017, 22, 16–27. [Google Scholar] [CrossRef]
- Junglen, S.; Korries, M.; Grasse, W.; Wieseler, J.; Kopp, A.; Hermanns, K.; León-Juárez, M.; Drosten, C.; Kümmerer, B.M.; Randall, G. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle. mSphere 2017, 2, e00375-16. [Google Scholar] [CrossRef]
- Tangudu, C.S.; Charles, J.; Nunez-Avellaneda, D.; Hargett, A.M.; Brault, A.C.; Blitvich, B.J. Chimeric Zika viruses containing structural protein genes of insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions. Virology 2021, 559, 30–39. [Google Scholar] [CrossRef]
- Zhu, Y.; Chaubey, B.; Olsen, G.L.; Varani, G. Structure of Essential RNA Regulatory Elements in the West Nile Virus 3′-Terminal Stem Loop. J. Mol. Biol. 2024, 436, 168767. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, D.; Yuan, F.; Yan, Y.; Wang, Z.; Liu, P.; Yu, Q.; Zhang, X.; Wang, X.; Zheng, A. Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses. Proc. Natl. Acad. Sci. USA 2022, 119, e2110491119. [Google Scholar] [CrossRef] [PubMed]
- Tangudu, C.S.; Hargett, A.M.; Blitvich, B.J. Evidence that untranslated genomic sequences are key determinants of insect-specific flavivirus host restriction. Virology 2022, 574, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Elrefaey, A.M.; Abdelnabi, R.; Rosas, A.L.R.; Wang, L.; Basu, S.; Delang, L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020, 12, 964. [Google Scholar] [CrossRef] [PubMed]
- McFadden, G.; Mohamed, M.R.; Rahman, M.M.; Bartee, E. Cytokine determinants of viral tropism. Nat. Rev. Immunol. 2009, 9, 645–655. [Google Scholar] [CrossRef]
- Tree, M.O.; McKellar, D.R.; Kieft, K.J.; Watson, A.M.; Ryman, K.D.; Conway, M.J. Insect-specific flavivirus infection is restricted by innate immunity in the vertebrate host. Virology 2016, 497, 81–91. [Google Scholar] [CrossRef]
- Colmant, A.M.; Hobson-Peters, J.; Slijkerman, T.A.; Harrison, J.J.; Pijlman, G.P.; van Oers, M.M.; Simmonds, P.; Hall, R.A.; Fros, J.J. Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses 2021, 13, 573. [Google Scholar] [CrossRef]
- Marklewitz, M.; Zirkel, F.; Kurth, A.; Drosten, C.; Junglen, S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proc. Natl. Acad. Sci. USA 2015, 112, 7536–7541. [Google Scholar] [CrossRef]
- Bolling, B.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef]
- Blitvich, B.J.; Firth, A.E. Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization. Viruses 2015, 7, 1927–1959. [Google Scholar] [CrossRef]
- Calzolari, M.; Zé-Zé, L.; Vázquez, A.; Seco, M.P.S.; Amaro, F.; Dottori, M. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. Infect. Genet. Evol. 2016, 40, 381–388. [Google Scholar] [CrossRef]
- Carvalho, V.L.; Long, M.T. Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines 2021, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Hobson-Peters, J.; Colmant, A.M.G.; Koh, J.; Newton, N.D.; Warrilow, D.; Bielefeldt-Ohmann, H.; Piyasena, T.B.H.; O’bRien, C.A.; Vet, L.J.; et al. Antigenic Characterization of New Lineage II Insect-Specific Flaviviruses in Australian Mosquitoes and Identification of Host Restriction Factors. mSphere 2020, 5, e00095-20. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.R.; Ranadeva, N.D.; Sirisena, K.; Wijesinghe, K.J. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect. Dis. 2024, 10, 20–56. [Google Scholar] [CrossRef] [PubMed]
- Hazlewood, J.E.; Rawle, D.J.; Tang, B.; Yan, K.; Vet, L.J.; Nakayama, E.; Hobson-Peters, J.; Hall, R.A.; Suhrbier, A. A Zika Vaccine Generated Using the Chimeric Insect-Specific Binjari Virus Platform Protects against Fetal Brain Infection in Pregnant Mice. Vaccines 2020, 8, 496. [Google Scholar] [CrossRef]
- Vet, L.J.; Setoh, Y.X.; Amarilla, A.A.; Habarugira, G.; Suen, W.W.; Newton, N.D.; Harrison, J.J.; Hobson-Peters, J.; Hall, R.A.; Bielefeldt-Ohmann, H. Protective Efficacy of a Chimeric Insect-Specific Flavivirus Vaccine against West Nile Virus. Vaccines 2020, 8, 258. [Google Scholar] [CrossRef]
- Hazlewood, J.E.; Tang, B.; Yan, K.; Rawle, D.J.; Harrison, J.J.; Hall, R.A.; Hobson-Peters, J.; Suhrbier, A. The Chimeric Binjari-Zika Vaccine Provides Long-Term Protection against ZIKA Virus Challenge. Vaccines 2022, 10, 85. [Google Scholar] [CrossRef]
- Yan, K.; Vet, L.J.; Tang, B.; Hobson-Peters, J.; Rawle, D.J.; Le, T.T.; Larcher, T.; Hall, R.A.; Suhrbier, A. A Yellow Fever Virus 17D Infection and Disease Mouse Model Used to Evaluate a Chimeric Binjari-Yellow Fever Virus Vaccine. Vaccines 2020, 8, 368. [Google Scholar] [CrossRef]
- Wen, D.; Ding, L.S.; Zhang, Y.; Li, X.; Zhang, X.; Yuan, F.; Zhao, T.; Zheng, A. Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine. Nat. Commun. 2022, 13, 7780. [Google Scholar] [CrossRef]
- Dong, H.-L.; He, M.-J.; Wang, Q.-Y.; Cui, J.-Z.; Chen, Z.-L.; Xiong, X.-H.; Zhang, L.-C.; Cheng, H.; Xiong, G.-Q.; Hu, A.; et al. Rapid Generation of Recombinant Flaviviruses Using Circular Polymerase Extension Reaction. Vaccines 2023, 11, 1250. [Google Scholar] [CrossRef]
- Dong, H.-L.; Chen, Z.-L.; He, M.-J.; Cui, J.-Z.; Cheng, H.; Wang, Q.-Y.; Xiong, X.-H.; Liu, G.; Chen, H.-P. The Chimeric Chaoyang-Zika Vaccine Candidate Is Safe and Protective in Mice. Vaccines 2024, 12, 215. [Google Scholar] [CrossRef]
- Auguste, A.J.; Langsjoen, R.M.; Porier, D.L.; Erasmus, J.H.; Bergren, N.A.; Bolling, B.G.; Luo, H.; Singh, A.; Guzman, H.; Popov, V.L.; et al. Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology 2021, 562, 50–62. [Google Scholar] [CrossRef]
- Tanelus, M.; López, K.; Smith, S.; Muller, J.A.; Porier, D.L.; Auguste, D.I.; Stone, W.B.; Paulson, S.L.; Auguste, A.J. Exploring the immunogenicity of an insect-specific virus vectored Zika vaccine candidate. Sci. Rep. 2023, 13, 19948. [Google Scholar] [CrossRef]
- Porier, D.L.; Wilson, S.N.; Auguste, D.I.; Leber, A.; Coutermarsh-Ott, S.; Allen, I.C.; Caswell, C.C.; Budnick, J.A.; Bassaganya-Riera, J.; Hontecillas, R.; et al. Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. Vaccines 2021, 9, 1142. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Hobson-Peters, J.; Bielefeldt-Ohmann, H.; Hall, R.A. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines 2021, 9, 1230. [Google Scholar] [CrossRef] [PubMed]
- Piyasena, T.B.H.; Setoh, Y.X.; Hobson-Peters, J.; Newton, N.D.; Bielefeldt-Ohmann, H.; McLean, B.J.; Vet, L.J.; Khromykh, A.A.; Hall, R.A. Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells. Sci. Rep. 2017, 7, 2940. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, J.H.; Auguste, A.J.; Kaelber, J.T.; Luo, H.; Rossi, S.L.; Fenton, K.; Leal, G.; Kim, D.Y.; Chiu, W.; Wang, T.; et al. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat. Med. 2017, 23, 192–199. [Google Scholar] [CrossRef]
- Porier, D.L.; Adam, A.; Kang, L.; Michalak, P.; Tupik, J.; Santos, M.A.; Lee, C.; Allen, I.C.; Wang, T.; Auguste, A.J. Humoral and T-cell-mediated responses to a pre-clinical Zika vaccine candidate that utilizes a unique insect-specific flavivirus platform . bioRxiv 2023. preprint. [Google Scholar] [CrossRef]
- Meganck, R.M.; Zhu, D.; Dong, S.; Snoderly-Foster, L.J.; Dalben, Y.R.; Thiono, D.J.; White, L.J.; DeSilva, A.M.; Baric, R.; Tse, L.V.; et al. Evolution of a Functionally Intact but Antigenically Distinct DENV Fusion Loop. eLife 2023, 12, RP87555. [Google Scholar]
- Santos-Peral, A.; Luppa, F.; Goresch, S.; Nikolova, E.; Zaucha, M.; Lehmann, L.; Dahlstroem, F.; Karimzadeh, H.; Thorn-Seshold, J.; Winheim, E.; et al. Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat. Commun. 2024, 15, 1696. [Google Scholar] [CrossRef]
Characteristic | Insect-Specific Flavivirus | Pathogenic Flavivirus | |
---|---|---|---|
Similarity | Genome size | approximately 10.0–11.0 kb (e.g., CFAV is 10.9 kb, Dengue is 10.7 kb) | |
Genome structure | One open reading frame (ORF) encoding 3 structural proteins and 7 non-structural proteins | ||
Genome layout | 5′UTR-[C-prM-E-NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5]-3′UTR | ||
Difference | Host range | Limited to the cells of arthropods such as mosquitoes | Mosquito/tick vectors and mammalian cells |
Replication | Do not replicate in mammalian cells | Do replicate in mammalian cells | |
Pathogenicity | Non-pathogenic to vertebrates | Cause serious diseases in humans | |
Transmission | Only vertical transmission (mosquito egg transmission) | Spreads horizontally through vector bites |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.-Z.; Xiong, X.-H.; Wang, Q.-Y.; Dong, H.-L.; Liu, G.; Chen, H.-P. Insect-Specific Flaviviruses Have Potential Applications as a Scaffold for Pathogenic Flavivirus Vaccines. Vaccines 2025, 13, 769. https://doi.org/10.3390/vaccines13070769
Cui J-Z, Xiong X-H, Wang Q-Y, Dong H-L, Liu G, Chen H-P. Insect-Specific Flaviviruses Have Potential Applications as a Scaffold for Pathogenic Flavivirus Vaccines. Vaccines. 2025; 13(7):769. https://doi.org/10.3390/vaccines13070769
Chicago/Turabian StyleCui, Jia-Zhen, Xiang-Hua Xiong, Qing-Yang Wang, Hao-Long Dong, Gang Liu, and Hui-Peng Chen. 2025. "Insect-Specific Flaviviruses Have Potential Applications as a Scaffold for Pathogenic Flavivirus Vaccines" Vaccines 13, no. 7: 769. https://doi.org/10.3390/vaccines13070769
APA StyleCui, J.-Z., Xiong, X.-H., Wang, Q.-Y., Dong, H.-L., Liu, G., & Chen, H.-P. (2025). Insect-Specific Flaviviruses Have Potential Applications as a Scaffold for Pathogenic Flavivirus Vaccines. Vaccines, 13(7), 769. https://doi.org/10.3390/vaccines13070769