Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sleep Quality Analysis
2.3. Clock Gene Analysis
2.4. COVID-19 Vaccination
2.5. SARS-CoV-2 Infection
2.6. Statistical Analysis
3. Results
4. Discussion
Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Michaels, D.; Wagner, G.R.; Ryan, L. Lessons From COVID-19 for Protecting Workers in the Next Pandemic. JAMA 2023, 330, 23–24. [Google Scholar] [CrossRef] [PubMed]
- WHO Keep Health Workers Safe to Keep Patients Safe. Available online: https://www.who.int/news/item/17-09-2020-keep-health-workers-safe-to-keep-patients-safe-who (accessed on 17 September 2020).
- Michaels, D.; Wagner, G.R. Occupational Safety and Health Administration (OSHA) and worker safety during the COVID-19 pandemic. JAMA 2020, 324, 1389–1390. [Google Scholar] [CrossRef]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, Y.; Wu, K.; Wang, T.; Su, X.; Han, Q.; Xi, Y.; Zhu, S.; Gao, Y.; Wang, H.; et al. Improved night shift schedule related to the mortality of critically ill patients with Corona Virus Disease 2019. Sleep Med. 2020, 75, 354–360. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Somma, G.; Mazza, A.; D’Ancona, U.; Marcuccilli, F.; Grelli, S.; Aurilio, M.T.; Pietroiusti, A.; Magrini, A.; et al. Reduced Titers of Circulating Anti-SARS-CoV-2 Antibodies and Risk of COVID-19 Infection in Healthcare Workers during the Nine Months after Immunization with the BNT162b2 mRNA Vaccine. Vaccines 2022, 10, 141. [Google Scholar] [CrossRef]
- Rizza, S.; Coppeta, L.; Grelli, S.; Ferrazza, G.; Chiocchi, M.; Vanni, G.; Bonomo, O.C.; Bellia, A.; Andreoni, M.; Magrini, A.; et al. High body mass index and night shift work are associated with COVID-19 in health care workers. J. Endocrinol. Investig. 2021, 44, 1097–1101. [Google Scholar] [CrossRef]
- Nguyen, V.; Zhang, Y.; Gao, C.; Cao, X.; Tian, Y.; Carver, W.; Kiaris, H.; Cui, T.; Tan, W. The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and Increases Susceptibility to Lipotoxicity: Implication for a Role of Nrf2. Cells 2022, 11, 1916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daskou, M.; Fotooh Abadi, L.; Gain, C.; Wong, M.; Sharma, E.; Kombe, A.J.; Nanduri, R.; Kelesidis, T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023, 13, 39. [Google Scholar] [CrossRef]
- Yuen, C.K.; Wong, W.M.; Mak, L.F.; Lam, J.Y.; Cheung, L.Y.; Cheung, D.T.; Ng, Y.Y.; Lee, A.C.; Zhong, N.; Yuen, K.Y.; et al. An interferon-integrated mucosal vaccine provides pan-sarbecovirus protection in small animal models. Nat. Commun. 2023, 14, 6762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagemann, K.; Riecken, K.; Jung, J.M.; Hildebrandt, H.; Menzel, S.; Bunders, M.J.; Fehse, B.; Koch-Nolte, F.; Heinrich, F.; Peine, S.; et al. Natural killer cell-mediated ADCC in SARS-CoV-2-infected individuals and vaccine recipients. Eur. J. Immunol. 2022, 52, 1297–1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rizza, S.; Luzi, A.; Mavilio, M.; Ballanti, M.; Massimi, A.; Porzio, O.; Magrini, A.; Hannemann, J.; Menghini, R.; Cridland, J.; et al. Impact of light therapy on rotating night shift workers: The EuRhythDia study. Acta. Diabetol. 2022, 59, 1589–1596. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [PubMed]
- Coppeta, L.; Balbi, O.; Grattagliano, Z.; Mina, G.G.; Pietroiusti, A.; Magrini, A.; Bolcato, M.; Trabucco Aurilio, M. First Dose of the BNT162b2 mRNA COVID-19 Vaccine Reduces Symptom Duration and Viral Clearance in Healthcare Workers. Vaccines 2021, 9, 659. [Google Scholar] [CrossRef]
- Kim, D.H.; Ahn, H.S.; Go, H.J.; Kim, D.Y.; Kim, J.H.; Lee, J.B.; Park, S.Y.; Song, C.S.; Lee, S.W.; Ha, S.D.; et al. Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci. Rep. 2021, 11, 21462. [Google Scholar] [CrossRef]
- Ercegovac, M.; Asanin, M.; Savic-Radojevic, A.; Ranin, J.; Matic, M.; Djukic, T.; Coric, V.; Jerotic, D.; Todorovic, N.; Milosevic, I.; et al. Antioxidant Genetic Profile Modifies Probability of Developing Neurological Sequelae in Long-COVID. Antioxidants 2022, 11, 954. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Eldahshan, O.A.; Abdelkhalek, Y.M.; El Dahshan, M.; Ahmed, E.A.; Sabatier, J.M.; Batiha, G.E. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of COVID-19. J. Biochem. Mol. Toxicol. 2024, 38, e23605. [Google Scholar] [CrossRef]
- Puentes-Pardo, J.D.; Moreno-SanJuan, S.; Carazo, Á.; León, J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants 2020, 9, 1214. [Google Scholar] [CrossRef]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 2003, 8, 379–391. [Google Scholar] [CrossRef]
- Zhang, D.D.; Lo, S.C.; Sun, Z.; Habib, G.M.; Lieberman, M.W.; Hannink, M. Ubiquitination of Keap1, a BTB-K3lch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J. Biol. Chem. 2005, 280, 30091–30099. [Google Scholar] [CrossRef]
- Holmström, K.M.; Kostov, R.V.; Dinkova-Kostova, A.T. The multifaceted role of Nrf2 in mitochondrial function. Curr. Opin. Toxicol. 2016, 1, 80–91. [Google Scholar]
- Hamad, R.S.; Al-Kuraishy, H.M.; Alexiou, A.; Papadakis, M.; Ahmed, E.A.; Saad, H.M.; Batiha, G.E. SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Cell Stress Chaperones 2023, 28, 657–673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–25418. [Google Scholar]
- Safdar, A.; Hamadeh, M.J.; Kaczor, J.J.; Raha, S.; Debeer, J.; Tarnopolsky, M.A. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE 2010, 5, e10778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Safdar, A.; deBeer, J.; Tarnopolsky, M.A. Dysfunctional Nrf2-Keap1 redox signaling in skeletal muscle of the sedentary old. Free Radic. Biol. Med. 2010, 49, 1487–1493. [Google Scholar]
- Zhao, S.; Ghosh, A.; Lo, C.S.; Chenier, I.; Scholey, J.W.; Filep, J.G.; Ingelfinger, J.R.; Zhang, S.L.; Chan, J.S.D. Nrf2 Deficiency Upregulates Intrarenal Angiotensin-Converting Enzyme-2 and Angiotensin 1-7 Receptor Expression and Attenuates Hypertension and Nephropathy in Diabetic Mice. Endocrinology 2018, 159, 836–852. [Google Scholar] [PubMed]
- Fenn, J.; Madon, K.; Conibear, E.; Derelle, R.; Nevin, S.; Kundu, R.; Hakki, S.; Tregoning, J.S.; Koycheva, A.; Derqui, N.; et al. INSTINCT Study Investigators. An ultra-early, transient interferon-associated innate immune response associates with protection from SARS-CoV-2 infection despite exposure. EBioMedicine 2025, 111, 105475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castro, S.M.; Guerrero-Plata, A.; Suarez-Real, G.; Adegboyega, P.A.; Colasurdo, G.N.; Khan, A.M.; Garofalo, R.P.; Casola, A. Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am. J. Respir. Crit. Care Med. 2006, 174, 1361–136920. [Google Scholar]
- Chen, S.; Xie, Y.; Liang, Z.; Liu, J.; Wang, J.; Mao, Y.; Xing, F.; Wei, X.; Wang, Z.; Yang, J.; et al. Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway. Biomed. J. 2025, 100826. [Google Scholar] [CrossRef]
- Feng, G.; Zhuge, P.; Zou, Y.; Zhang, Z.; Guo, J.; Ma, J. Correlation Analysis of Serum Lipopolysaccharide, Nuclear Factor Erythroid 2-Related Factor 2 and Haem Oxygenase 1 Levels and Cognitive Impairment in Patients with Obstructive Sleep Apnoea. J. Inflamm. Res. 2024, 17, 2951–2958. [Google Scholar] [CrossRef]
- Takahashi, J. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2007, 18, 164–179. [Google Scholar] [CrossRef]
- Anjos, J.S.D.; Cardozo, L.F.M.F.; Black, A.P.; Santos da Silva, G.; Vargas Reis, D.C.M.; Salarolli, R.; Carraro-Eduardo, J.C.; Mafra, D. Effects of Low Protein Diet on Nuclear Factor Erythroid 2-Related Factor 2 Gene Expression in Nondialysis Chronic Kidney Disease Patients. J. Ren. Nutr. 2020, 30, 46–52. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 246) | Never Infected (n = 97) | One Infection (n = 114) | Two or More Infections (n = 35) | p | |
---|---|---|---|---|---|
Age (years) | 37.2 ± 6.0 | 37.0 ± 6.6 | 37.9 ± 6.1 | 37.4 ± 5.2 | 0.652 |
Sex (female/male) | 184/62 | 67/30 | 88/26 | 29/6 | 0.198 |
Smoke (current-former vs. never) | 85/161 | 33/64 | 40/74 | 12/23 | 0.229 |
BMI | 24.6 ± 4.6 | 24.3 ± 3.9 | 24.4 ± 4.2 | 26.1 ± 5.1 | 0.273 |
Systolic Blood Pressure (mmHg) | 112.5 ± 12.2 | 110.3 ± 12.3 | 112.1 ± 12.1 | 115.0 ± 12.5 | 0.314 |
Diastolic Blood Pressure (mmHg) | 73.8 ± 8.7 | 72.1 ± 8.1 | 74.4 ± 9.7 | 74.3 ± 9.4 | 0.301 |
Fasting glucose (mg/dL) | 88.5 ± 8.2 | 88.5 ± 8.2 | 88.9 ± 8.3 | 88.2 ± 8.9 | 0.789 |
HbA1c (%) | 5.3 ± 0.3 | 5.3 ± 0.3 | 5.3 ± 0.3 | 5.3 ± 0.3 | 0.800 |
Total cholesterol (mg/dL) | 188.3 ± 35.9 | 186.5 ± 36.0 | 192.2 ± 34.9 | 194.6 ± 36.6 | 0.364 |
HDL (mg/dL) | 59.5 ± 15.8 | 59.5 ± 17.5 | 60.3 ± 13.6 | 58.5 ± 16.0 | 0.931 |
LDL (mg/dL) | 110.4 ± 30.2 | 107.2 ± 30.7 | 112.4 ± 30.8 | 116.2 ± 29.0 | 0.314 |
Triglycerides (mg/dL) | 98.8 ± 77.3 | 99.6 ± 75.6 | 97.1 ± 55.8 | 99.5 ± 87.9 | 0.907 |
Creatinin (mg/dL) | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.2 | 0.849 |
Aspartate aminotransferase (AST) (U/L) | 14.4 ± 7.2 | 14.9 ± 7.9 | 14.4 ± 6.5 | 14.0 ± 5.5 | 0.724 |
Alanine aminotransferase (ALT) (U/L) | 27.8 ± 14.2 | 27.0 ± 11.6 | 27.2 ± 14.0 | 28.7 ± 15.0 | 0.929 |
CRP (mg/L) | 1.7 ± 2.7 | 1.9 ± 3.6 | 1.5 ± 2.5 | 1.8 ± 2.5 | 0.916 |
REV-ERBα mRNA (AU) | 1.96 ± 1.32 | 2.01 ± 1.45 | 1.84 ± 0.57 | 2.00 ± 1.54 | 0.331 |
B-MAL1 mRNA (AU) | 1.10 ± 0.51 | 1.02 ± 0.61 | 1.11 ± 0.52 | 1.18 ± 0.31 | 0.451 |
REV-ERBα/BMAL1 | 1.75 ± 0.72 | 1.99 ± 0.79 | 1.65 ± 0.32 | 1.69 ± 1.86 | 0.302 |
IFN-ɣ mRNA (AU) | 0.8 ± 0.8 | 0.9 ± 0.8 | 0.8 ± 0.8 | 0.7 ± 0.5 | 0.303 |
IL-1β mRNA (AU) | 7.3 ± 17.2 | 8.1 ± 20.0 | 7.9 ± 17.3 | 4.4 ± 6.7 | 0.544 |
NFR-2 mRNA (AU) | 0.8 ± 0.4 | 1.0 ± 0.6 | 0.8 ± 0.4 | 0.6 ± 0.2 | <0.01 |
No SARS-CoV-2 Infection (n = 95) | SARS-CoV-2 Infection (n = 95) | p | |
---|---|---|---|
Age (years) | 37.1 ± 6.7 | 38.4 ± 5.9 | 0.159 |
Sex (female/male) | 66/29 | 68/27 | 0.437 |
Smoke (current-former vs. never) | 32/63 | 32/63 | 1 |
BMI | 24.2 ± 3.5 | 26.3 ± 4.2 | <0.01 |
Systolic Blood Pressure (mmHg) | 110.3 ± 12.3 | 113.8 ± 13.3 | 0.601 |
Diastolic Blood Pressure (mmHg) | 72.1 ± 8.1 | 75.2 ± 9.7 | 0.022 |
Fasting glucose (mg/dL) | 88.6 ± 8.3 | 88.8 ± 7.4 | 0.843 |
HbA1c (%) | 5.3 ± 0.3 | 5.3 ± 0.3 | 0.164 |
Total cholesterol (mg/dL) | 186.7 ± 36.1 | 198.4 ± 35.8 | 0.025 |
HDL (mg/dL) | 59.5 ± 17.6 | 57.6 ± 14.8 | 0.417 |
LDL (mg/dL) | 107.4 ± 30.8 | 119.2 ± 36.6 | 0.010 |
Triglycerides (mg/dL) | 98.5 ± 75.7 | 108.5 ± 72.2 | 0.351 |
Creatinin (mg/dL) | 0.79 ± 0.15 | 0.79 ± 0.14 | 0.961 |
Aspartate aminotransferase (AST) (U/L) | 14.9 ± 7.9 | 14.4 ± 6.3 | 0.573 |
Alanine aminotransferase (ALT) (U/L) | 26.9 ± 11.7 | 29.1 ± 15.9 | 0.270 |
CRP (mg/L) | 1.9 ± 3.6 | 1.7 ± 3.4 | 0.553 |
REV-ERBα mRNA (AU) | 1.92 ± 1.61 | 1.83 ± 1.02 | 0.502 |
B-MAL1 mRNA (AU) | 1.00 ± 0.49 | 1.07 ± 0.55 | 0.602 |
REV-ERBα/BMAL1 | 1.89 ± 0.81 | 1.77 ± 0.47 | 0.338 |
IFN-ɣ mRNA (AU) | 0.95 ± 0.90 | 0.86 ± 0.86 | 0.472 |
IL-1β mRNA (AU) | 8.1 ± 19.9 | 8.7 ± 18.6 | 0.846 |
NFR-2 mRNA (AU) | 0.99 ± 0.59 | 0.75 ± 0.41 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizza, S.; Coppeta, L.; Ferrazza, G.; Nucera, A.; Postorino, M.; Quatrana, A.; Ferrari, C.; Menghini, R.; Longo, S.; Magrini, A.; et al. Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses. Vaccines 2025, 13, 739. https://doi.org/10.3390/vaccines13070739
Rizza S, Coppeta L, Ferrazza G, Nucera A, Postorino M, Quatrana A, Ferrari C, Menghini R, Longo S, Magrini A, et al. Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses. Vaccines. 2025; 13(7):739. https://doi.org/10.3390/vaccines13070739
Chicago/Turabian StyleRizza, Stefano, Luca Coppeta, Gianluigi Ferrazza, Alessandro Nucera, Maria Postorino, Andrea Quatrana, Cristiana Ferrari, Rossella Menghini, Susanna Longo, Andrea Magrini, and et al. 2025. "Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses" Vaccines 13, no. 7: 739. https://doi.org/10.3390/vaccines13070739
APA StyleRizza, S., Coppeta, L., Ferrazza, G., Nucera, A., Postorino, M., Quatrana, A., Ferrari, C., Menghini, R., Longo, S., Magrini, A., & Federici, M. (2025). Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses. Vaccines, 13(7), 739. https://doi.org/10.3390/vaccines13070739