Pre-Vaccination Immune Profiles and Responsiveness to Innate Stimuli Predict Reactogenicity and Antibody Magnitude Following mRNA Vaccination
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Antibody Testing
2.3. Post-Vaccine Symptom Assessment
2.4. PBMC Isolation and Purification
2.5. Formulation of LNP and mRNA-LNP
2.6. Cell Preparation and Stimulation
2.7. Flow Cytometry
2.8. Cytokine Analysis
2.9. Statistical Analysis
3. Results
3.1. Analysis of Immunogenicity and Reactogenicity in Recipients of BNT162b2 Vaccination
3.2. Baseline Innate Immune Phenotypes Associated with Reactogenicity
3.3. Multiple Regression Modeling Identified Associations Between Cytokine Responses to RNA Sensor Stimulation and Reactogenicity
3.4. Activation of cDC2 and pDC Populations Correlate with Antibody Response 1-Month Post-Vaccination
3.5. Innate Immune Responses That Correlate with Antibody Durability Differ from Those That Correlate with Reactogenicity and Antibody Levels at 1-Month Post-Vaccination
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCR | B cell receptor |
cDC | Conventional DC |
COVID-19 | Coronavirus Disease 2019 |
DC | Dendritic cell |
HBV | Hepatitis B virus |
Ig | Immunoglobulin |
LNP | Lipid nanoparticle |
MFI | Mean fluorescence intensity |
mRNA | Messenger RNA |
MMIA | Microsphere-bead multiplex immunoassay |
MPLA | Monophosphoryl lipid A |
NK | Natural killer |
PRR | Pattern recognition receptor |
PBMCs | Peripheral blood mononuclear cells |
pDC | Plasmacytoid DC |
IFN | Interferon |
TLR | Toll-like receptor |
Appendix A
Points | Not at All | A Little Bit | Somewhat | Quite a Bit | Very Much |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Pain at injection site | |||||
Soreness at injection site | |||||
Redness at injection site | |||||
Weak or tired | |||||
Headache | |||||
Body aches or pains | |||||
Felt hot | |||||
Felt cold | |||||
Chills or shivering | |||||
Joint pains | |||||
Felt nauseous | |||||
Swollen lymph nodes |
Fluorochrome | Marker | Vendor | Clone | Cat. # |
---|---|---|---|---|
BUV395 | HLA DR | BD Biosciences | G46-6 | 564040 |
Live/Dead blue | Thermo Fisher | L34962A | ||
BUV496 | CD56 | BD Biosciences | NCAM16.2 | 750479 |
BUV563 | CD40 | BD Biosciences | 5C3 | 741381 |
BUV615 | CD5 | BD Biosciences | UCHT2 | 751289 |
BUV737 | CD70 | BD Biosciences | Ki-24 | 612856 |
BUV805 | CXCR4 (CD184) | BD Biosciences | 12G5 | 742043 |
BV421 | CD303 | BioLegend | 201A | 354212 |
BV510 | CD3 | BioLegend | SK7 | 344828 |
BV605 | CD1c | BioLegend | L161 | 331538 |
BV650 | CD123 | BioLegend | 6H6 | 306020 |
BV711 | CD25 | BioLegend | M-A251 | 356138 |
BV785 | CD16 | BioLegend | 3G8 | 302046 |
PerCP Cy5.5 | CD2 | BioLegend | RPA-2.10 | 300216 |
PE | CLEC9A | BioLegend | 8F9 | 353804 |
PE-Dazzle 594 | CD11c | BioLegend | Bu15 | 337228 |
PE-Cy5 | CD86 | BioLegend | IT2.2 | 305408 |
PE-Cy7 | CD80 | BioLegend | 2D10 | 305218 |
AF647 | CD141 | BioLegend | M80 | 344124 |
AF700 | CD19 | BioLegend | HIB19 | 302226 |
APC Cy7 | CD14 | BioLegend | M5E2 | 301820 |
APC fire 810 | CD38 | BioLegend | HIT2 | 303550 |
References
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Ayoubkhani, D.; Bosworth, M.L.; King, S.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; Alwan, N.A.; Walker, A.S. Risk of Long COVID in People Infected with Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study. Open Forum Infect. Dis. 2022, 9, ofac464. [Google Scholar] [CrossRef]
- Krishna, B.A.; Metaxaki, M.; Wills, M.R.; Sithole, N. Reduced Incidence of Long Coronavirus Disease Referrals to the Cambridge University Teaching Hospital Long Coronavirus Disease Clinic. Clin. Infect. Dis. 2023, 76, 738–740. [Google Scholar] [CrossRef] [PubMed]
- Hertz, T.; Levy, S.; Ostrovsky, D.; Oppenheimer, H.; Zismanov, S.; Kuzmina, A.; Friedman, L.M.; Trifkovic, S.; Brice, D.; Chun-Yang, L.; et al. Correlates of protection for booster doses of the SARS-CoV-2 vaccine BNT162b2. Nat. Commun. 2023, 14, 4575. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous COVID-19 Booster Vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Coggins, S.A.; Laing, E.D.; Olsen, C.H.; Goguet, E.; Moser, M.; Jackson-Thompson, B.M.; Samuels, E.C.; Pollett, S.D.; Tribble, D.R.; Davies, J.; et al. Adverse Effects and Antibody Titers in Response to the BNT162b2 mRNA COVID-19 Vaccine in a Prospective Study of Healthcare Workers. Open Forum Infect. Dis. 2022, 9, ofab575. [Google Scholar] [CrossRef]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Galvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 2022, 185, 2434–2451.e2417. [Google Scholar] [CrossRef] [PubMed]
- Laing, E.D.; Weiss, C.D.; Samuels, E.C.; Coggins, S.A.; Wang, W.; Wang, R.; Vassell, R.; Sterling, S.L.; Tso, M.S.; Conner, T.; et al. Durability of Antibody Response and Frequency of SARS-CoV-2 Infection 6 Months after COVID-19 Vaccination in Healthcare Workers. Emerg. Infect. Dis. 2022, 28, 828–832. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- van Ewijk, C.E.; Suarez Hernandez, S.; Jacobi, R.H.J.; Knol, M.J.; Hahne, S.J.M.; Wijmenga-Monsuur, A.J.; Boer, M.C.; van de Garde, M.D.B. Innate immune response after BNT162b2 COVID-19 vaccination associates with reactogenicity. Vaccine X 2025, 22, 100593. [Google Scholar] [CrossRef]
- Takano, T.; Morikawa, M.; Adachi, Y.; Kabasawa, K.; Sax, N.; Moriyama, S.; Sun, L.; Isogawa, M.; Nishiyama, A.; Onodera, T.; et al. Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine. Cell Rep. Med. 2022, 3, 100631. [Google Scholar] [CrossRef] [PubMed]
- Burny, W.; Marchant, A.; Herve, C.; Callegaro, A.; Caubet, M.; Fissette, L.; Gheyle, L.; Legrand, C.; Ndour, C.; Tavares Da Silva, F.; et al. Inflammatory parameters associated with systemic reactogenicity following vaccination with adjuvanted hepatitis B vaccines in humans. Vaccine 2019, 37, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Herve, C.; Laupeze, B.; Del Giudice, G.; Didierlaurent, A.M.; Tavares Da Silva, F. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines 2019, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Pullen, R.H., 3rd; Sassano, E.; Agrawal, P.; Escobar, J.; Chehtane, M.; Schanen, B.; Drake, D.R., 3rd; Luna, E.; Brennan, R.J. A Predictive Model of Vaccine Reactogenicity Using Data from an In Vitro Human Innate Immunity Assay System. J. Immunol. 2024, 212, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Burny, W.; Callegaro, A.; Bechtold, V.; Clement, F.; Delhaye, S.; Fissette, L.; Janssens, M.; Leroux-Roels, G.; Marchant, A.; van den Berg, R.A.; et al. Different Adjuvants Induce Common Innate Pathways That Are Associated with Enhanced Adaptive Responses against a Model Antigen in Humans. Front. Immunol. 2017, 8, 943. [Google Scholar] [CrossRef] [PubMed]
- Bartholomeus, E.; De Neuter, N.; Meysman, P.; Suls, A.; Keersmaekers, N.; Elias, G.; Jansens, H.; Hens, N.; Smits, E.; Van Tendeloo, V.; et al. Transcriptome profiling in blood before and after hepatitis B vaccination shows significant differences in gene expression between responders and non-responders. Vaccine 2018, 36, 6282–6289. [Google Scholar] [CrossRef]
- Nakaya, H.I.; Hagan, T.; Duraisingham, S.S.; Lee, E.K.; Kwissa, M.; Rouphael, N.; Frasca, D.; Gersten, M.; Mehta, A.K.; Gaujoux, R.; et al. Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 2015, 43, 1186–1198. [Google Scholar] [CrossRef]
- Mitchell, T.C.; Casella, C.R. No pain no gain? Adjuvant effects of alum and monophosphoryl lipid A in pertussis and HPV vaccines. Curr. Opin. Immunol. 2017, 47, 17–25. [Google Scholar] [CrossRef]
- Kazmin, D.; Clutterbuck, E.A.; Napolitani, G.; Wilkins, A.L.; Tarlton, A.; Thompson, A.J.; Montomoli, E.; Lapini, G.; Bihari, S.; White, R.; et al. Memory-like innate response to booster vaccination with MF-59 adjuvanted influenza vaccine in children. NPJ Vaccines 2023, 8, 100. [Google Scholar] [CrossRef]
- Tsang, J.S.; Schwartzberg, P.L.; Kotliarov, Y.; Biancotto, A.; Xie, Z.; Germain, R.N.; Wang, E.; Olnes, M.J.; Narayanan, M.; Golding, H.; et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 2014, 157, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Fourati, S.; Cristescu, R.; Loboda, A.; Talla, A.; Filali, A.; Railkar, R.; Schaeffer, A.K.; Favre, D.; Gagnon, D.; Peretz, Y.; et al. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat. Commun. 2016, 7, 10369. [Google Scholar] [CrossRef] [PubMed]
- Kotliarov, Y.; Sparks, R.; Martins, A.J.; Mule, M.P.; Lu, Y.; Goswami, M.; Kardava, L.; Banchereau, R.; Pascual, V.; Biancotto, A.; et al. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nat. Med. 2020, 26, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Parvandeh, S.; Poland, G.A.; Kennedy, R.B.; McKinney, B.A. Multi-Level Model to Predict Antibody Response to Influenza Vaccine Using Gene Expression Interaction Network Feature Selection. Microorganisms 2019, 7, 79. [Google Scholar] [CrossRef]
- Furman, D.; Jojic, V.; Kidd, B.; Shen-Orr, S.; Price, J.; Jarrell, J.; Tse, T.; Huang, H.; Lund, P.; Maecker, H.T.; et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol. Syst. Biol. 2013, 9, 659. [Google Scholar] [CrossRef]
- Bucasas, K.L.; Franco, L.M.; Shaw, C.A.; Bray, M.S.; Wells, J.M.; Nino, D.; Arden, N.; Quarles, J.M.; Couch, R.B.; Belmont, J.W. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J. Infect. Dis. 2011, 203, 921–929. [Google Scholar] [CrossRef]
- Fourati, S.; Tomalin, L.E.; Mule, M.P.; Chawla, D.G.; Gerritsen, B.; Rychkov, D.; Henrich, E.; Miller, H.E.R.; Hagan, T.; Diray-Arce, J.; et al. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nat. Immunol. 2022, 23, 1777–1787. [Google Scholar] [CrossRef]
- Jackson-Thompson, B.M.; Goguet, E.; Laing, E.D.; Olsen, C.H.; Pollett, S.; Hollis-Perry, K.M.; Maiolatesi, S.E.; Illinik, L.; Ramsey, K.F.; Reyes, A.E.; et al. Prospective Assessment of SARS-CoV-2 Seroconversion (PASS) study: An observational cohort study of SARS-CoV-2 infection and vaccination in healthcare workers. BMC Infect. Dis. 2021, 21, 544. [Google Scholar] [CrossRef]
- Goguet, E.; Powers, J.H., 3rd; Olsen, C.H.; Tribble, D.R.; Davies, J.; Illinik, L.; Jackson-Thompson, B.M.; Hollis-Perry, M.; Maiolatesi, S.E.; Pollett, S.; et al. Prospective Assessment of Symptoms to Evaluate Asymptomatic SARS-CoV-2 Infections in a Cohort of Health Care Workers. Open Forum Infect. Dis. 2022, 9, ofac030. [Google Scholar] [CrossRef]
- Graydon, E.K.; Conner, T.L.; Dunham, K.; Olsen, C.; Goguet, E.; Coggins, S.A.; Rekedal, M.; Samuels, E.; Jackson-Thompson, B.; Moser, M.; et al. Natural killer cells and BNT162b2 mRNA vaccine reactogenicity and durability. Front. Immunol. 2023, 14, 1225025. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y.K.; Ansell, S.M.; Kumar, V.; Qin, J.; et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013, 21, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- WN, V.; BD, R. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Kariko, K.; Ni, H.; Capodici, J.; Lamphier, M.; Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 2004, 279, 12542–12550. [Google Scholar] [CrossRef]
- Kariko, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Kasiewicz, L.N.; Newby, A.N.; Arral, M.L.; Yerneni, S.S.; Melamed, J.R.; LoPresti, S.T.; Fein, K.C.; Strelkova Petersen, D.M.; Kumar, S.; et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng. 2024, 8, 1483–1498. [Google Scholar] [CrossRef]
- Korzun, T.; Moses, A.S.; Jozic, A.; Grigoriev, V.; Newton, S.; Kim, J.; Diba, P.; Sattler, A.; Levasseur, P.R.; Le, N.; et al. Lipid Nanoparticles Elicit Reactogenicity and Sickness Behavior in Mice Via Toll-Like Receptor 4 and Myeloid Differentiation Protein 88 Axis. ACS Nano 2024, 18, 24842–24859. [Google Scholar] [CrossRef] [PubMed]
- Glaria, E.; Valledor, A.F. Roles of CD38 in the Immune Response to Infection. Cells 2020, 9, 228. [Google Scholar] [CrossRef]
- Milevoj Kopcinovic, L.; Unic, A.; Nikolac Gabaj, N.; Miler, M.; Vrtaric, A.; Bozovic, M.; Stefanovic, M. Reactogenicity and Peak Anti-RBD-S1 IgG Concentrations in Individuals with No Prior COVID-19 Infection Vaccinated with Different SARS-CoV-2 Vaccines. Lab. Med. 2024, 55, 162–168. [Google Scholar] [CrossRef]
- Rechavi, Y.; Shashar, M.; Lellouche, J.; Yana, M.; Yakubovich, D.; Sharon, N. Occurrence of BNT162b2 Vaccine Adverse Reactions Is Associated with Enhanced SARS-CoV-2 IgG Antibody Response. Vaccines 2021, 9, 977. [Google Scholar] [CrossRef]
- Levy, I.; Levin, E.G.; Olmer, L.; Regev-Yochay, G.; Agmon-Levin, N.; Wieder-Finesod, A.; Indenbaum, V.; Herzog, K.; Doolman, R.; Asraf, K.; et al. Correlation between Adverse Events and Antibody Titers among Healthcare Workers Vaccinated with BNT162b2 mRNA COVID-19 Vaccine. Vaccines 2022, 10, 1220. [Google Scholar] [CrossRef]
- Bauernfeind, S.; Salzberger, B.; Hitzenbichler, F.; Scigala, K.; Einhauser, S.; Wagner, R.; Gessner, A.; Koestler, J.; Peterhoff, D. Association between Reactogenicity and Immunogenicity after Vaccination with BNT162b2. Vaccines 2021, 9, 1089. [Google Scholar] [CrossRef]
- Shen, C.F.; Yen, C.L.; Fu, Y.C.; Cheng, C.M.; Shen, T.C.; Chang, P.D.; Cheng, K.H.; Liu, C.C.; Chang, Y.T.; Chen, P.L.; et al. Innate Immune Responses of Vaccinees Determine Early Neutralizing Antibody Production After ChAdOx1nCoV-19 Vaccination. Front. Immunol. 2022, 13, 807454. [Google Scholar] [CrossRef] [PubMed]
- Muyanja, E.; Ssemaganda, A.; Ngauv, P.; Cubas, R.; Perrin, H.; Srinivasan, D.; Canderan, G.; Lawson, B.; Kopycinski, J.; Graham, A.S.; et al. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine. J. Clin. Investig. 2014, 124, 3147–3158. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pineres, A.J.; Hildesheim, A.; Dodd, L.; Kemp, T.J.; Yang, J.; Fullmer, B.; Harro, C.; Lowy, D.R.; Lempicki, R.A.; Pinto, L.A. Gene expression patterns induced by HPV-16 L1 virus-like particles in leukocytes from vaccine recipients. J. Immunol. 2009, 182, 1706–1729. [Google Scholar] [CrossRef] [PubMed]
Cohort n = 29 | ||
---|---|---|
Sex | ||
Demographics | Female | 24 |
Male | 5 | |
Ethnicity | ||
Non-Hispanic | 26 | |
Hispanic | 3 | |
Non-specified | 0 | |
Race | ||
White | 19 | |
Black | 2 | |
Asian | 5 | |
Multiracial | 2 | |
Not reported | 1 | |
Age | ||
Median age (IQR) | 41.0 (35.0–47.0) | |
1-month post-vaccination | Anti-spike IgG response (post-second vaccination) | |
Median titer (range) (BAU/mL) | 2456.1 (296.8–15,746.4) | |
Days post-second vaccination | ||
Median days (range) | 29 (21–44) | |
6-months post-vaccination | Anti-spike IgG response (post-second vaccination) | |
Median titer (range) (BAU/mL) | 605.6 (57.9–1980.0) | |
Days post-second vaccination | ||
Median days (range) | 183 (166–200) | |
Reactogenicity | Symptom score (post-second vaccination) | |
Median symptom score (range) | 7 (0–38) |
Reactogenicity | |||||
---|---|---|---|---|---|
Stimulation | Cell Subset | Marker | Multiple R-Squared | Adjusted R-Squared | p-Value |
Baseline | pDC | CD70, HLA-DR, CD25 | 0.4795 | 0.4171 | <0.001 |
Monocyte | CD70, CD40 | 0.2877 | 0.2329 | 0.012 | |
cDC2 | CD70, CD38, HLA-DR, CXCR4 | 0.4846 | 0.3987 | 0.002 | |
cDC1 | CD86, CD25, CXCR4 | 0.4107 | 0.34 | 0.004 | |
B cell | CD70, CD86, HLA-DR, CD40, CD38 | 0.5224 | 0.4185 | 0.003 | |
Across cell subsets | pDC [CD70, CD25] B cell [CD40, HLA-DR, CD38] cDC1 [CD86] cDC2 [HLA-DR] Monocyte [CXCR4] | 0.7895 | 0.6897 | <0.001 | |
Empty LNP | Across cell subsets | NK [CD38] cDC2 [CD86] | 0.2862 | 0.2313 | 0.012 |
mRNA-LNP | NK | CD38, CD25 | 0.3233 | 0.2713 | 0.006 |
Monocyte | CD86, CD14, HLA-DR, CD40, CD80 | 0.567 | 0.4728 | 0.001 | |
Across cell subsets | NK [CD38] cDC1 [CD80] Monocyte [CD14, CD86] | 0.5446 | 0.4687 | <0.001 | |
Cytokines | IP-10, IL-8, IFN-γ | 0.4834 | 0.4214 | <0.001 | |
Cytokines and across cell subsets | IP-10 NK [CD38] Monocyte [CD86] | 0.5875 | 0.538 | <0.001 | |
MPLA | NK | CD38, CXCR4 | 0.206 | 0.145 | 0.050 |
Monocyte | CD70, CD40, HLA-DR, CD25 | 0.3959 | 0.2953 | 0.014 | |
cDC2 | CD80, CD86, HLA-DR | 0.3174 | 0.2354 | 0.021 | |
Across cell subsets | Monocyte [CD70, HLA-DR] cDC2 [CD80] pDC [CD86] | 0.5078 | 0.4258 | 0.001 | |
Poly I:C | NK | CD38, CD70 | 0.3582 | 0.3088 | 0.003 |
B cell | CD80, CD40 | 0.4332 | 0.3896 | <0.001 | |
Across cell subsets | NK [CD38, CD70] B cell [CD80, CD40] | 0.5753 | 0.4829 | <0.001 | |
Cytokines | IL-8, GM-CSF | 0.4504 | 0.3845 | 0.002 | |
Cytokines and across cell subsets | IFN-β, IL-8, GM-CSF B cell [CD40, CD80] NK [CD70] | 0.6347 | 0.535 | <0.001 | |
R848 | NK | CD70, CD38 | 0.3448 | 0.2944 | 0.004 |
cDC2 | CD80, CD70 | 0.1383 | 0.1064 | 0.047 | |
Across cell subsets | Monocyte [CD70] cDC1 [CD80] | 0.2902 | 0.2356 | 0.012 |
1-Month IgG | |||||
---|---|---|---|---|---|
Stimulation | Cell Subset | Markers | Multiple R-Squared | Adjusted R-Squared | p-Value |
Baseline | cDC2 | CD38, CXCR4, CD86 | 0.4029 | 0.3312 | 0.004 |
Empty LNP | cDC1 | CD25, CD40 | 0.3345 | 0.2834 | 0.005 |
Across cell subsets | cDC1 [CD25, CD40] cDC2 [CD25] | 0.3836 | 0.3096 | 0.006 | |
mRNA-LNP | cDC2 | CD40, CD86 | 0.2905 | 0.2359 | 0.012 |
Cytokines | IL-12, IL-8, TNFɑ | 0.5869 | 0.5373 | <0.001 | |
MPLA | pDC | CD38, CD70 | 0.2946 | 0.2403 | 0.011 |
NK | CD38, CD25 | 0.3317 | 0.2803 | 0.005 | |
Across cell subsets | cDC2 [CD38] pDC [CD70] NK [CD25, CD38] | 0.599 | 0.5322 | <0.001 | |
Poly I:C | pDC | CD38, CXCR4, CD40 | 0.3343 | 0.2544 | 0.016 |
Monocyte | CD70, CD80 | 0.3104 | 0.2573 | 0.008 | |
cDC1 | CD70, CD80 | 0.1615 | 0.1305 | 0.031 | |
B cell | CD38, CD80 | 0.2511 | 0.1935 | 0.023 | |
Across cell subsets | Monocyte [CD70, CD80] pDC [CXCR4] B cell [CD38] | 0.6024 | 0.5362 | <0.001 | |
Cytokines | GM-CSF, TNFɑ, IL-6 | 0.3993 | 0.3273 | 0.005 | |
R848 | pDC | CD38, CD70 | 0.3938 | 0.3471 | 0.001 |
NK | CXCR4, CD38, CD25 | 0.3196 | 0.2379 | 0.020 | |
cDC2 | CD86, CD40, CD25 | 0.4701 | 0.4066 | 0.001 | |
Across cell subsets | cDC1 [CD80] pDC [CD70] cDC2 [CD40, CD25, CD86] | 0.681 | 0.6116 | <0.001 |
6-Month IgG | |||||
---|---|---|---|---|---|
Stimulation | Cell Subset | Marker | Multiple R-Squared | Adjusted R-Squared | p-Value |
Baseline | pDC | CD40, HLA-DR | 0.2662 | 0.2098 | 0.018 |
Monocyte | CD38, CD70, CD14, CXCR4 | 0.3533 | 0.2455 | 0.028 | |
cDC2 | CD40, CD25 | 0.323 | 0.2709 | 0.006 | |
Across cell subsets | cDC2 [CD40] pDC [HLA-DR] Monocyte [CD70, CD14] | 0.5558 | 0.4817 | <0.001 | |
Empty LNP | cDC1 | CD25, CD80, CD38 | 0.2965 | 0.2121 | 0.030 |
MPLA | Monocyte | CD14, CXCR4 | 0.2137 | 0.1532 | 0.044 |
B cell | HLA-DR, CD25 | 0.18 | 0.1169 | 0.076 | |
Poly I:C | Monocyte | CD80, CD70 | 0.2743 | 0.2185 | 0.015 |
cDC2 | CD80, CD86 | 0.3254 | 0.2735 | 0.006 | |
Across cell subsets | Monocyte [CD80, CD70] cDC2 [CD80, CD86] | 0.46 | 0.37 | 0.004 | |
Cytokines and across cell subsets | IL-10 cDC2 [CD80, CD86] Monocyte [CD70] | 0.5464 | 0.4708 | <0.001 | |
R848 | B cell | CD40, CD25 | 0.3481 | 0.298 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelkoski, A.E.; Goguet, E.; Samuels Darcey, E.; Alameh, M.-G.; Said, H.; Pollett, S.; Powers, J.H., III; Laing, E.D.; Olsen, C.; Mitre, E.; et al. Pre-Vaccination Immune Profiles and Responsiveness to Innate Stimuli Predict Reactogenicity and Antibody Magnitude Following mRNA Vaccination. Vaccines 2025, 13, 718. https://doi.org/10.3390/vaccines13070718
Zelkoski AE, Goguet E, Samuels Darcey E, Alameh M-G, Said H, Pollett S, Powers JH III, Laing ED, Olsen C, Mitre E, et al. Pre-Vaccination Immune Profiles and Responsiveness to Innate Stimuli Predict Reactogenicity and Antibody Magnitude Following mRNA Vaccination. Vaccines. 2025; 13(7):718. https://doi.org/10.3390/vaccines13070718
Chicago/Turabian StyleZelkoski, Amanda E., Emilie Goguet, Emily Samuels Darcey, Mohamad-Gabriel Alameh, Hooda Said, Simon Pollett, John H. Powers, III, Eric D. Laing, Cara Olsen, Edward Mitre, and et al. 2025. "Pre-Vaccination Immune Profiles and Responsiveness to Innate Stimuli Predict Reactogenicity and Antibody Magnitude Following mRNA Vaccination" Vaccines 13, no. 7: 718. https://doi.org/10.3390/vaccines13070718
APA StyleZelkoski, A. E., Goguet, E., Samuels Darcey, E., Alameh, M.-G., Said, H., Pollett, S., Powers, J. H., III, Laing, E. D., Olsen, C., Mitre, E., & Malloy, A. M. W. (2025). Pre-Vaccination Immune Profiles and Responsiveness to Innate Stimuli Predict Reactogenicity and Antibody Magnitude Following mRNA Vaccination. Vaccines, 13(7), 718. https://doi.org/10.3390/vaccines13070718