Impact of Prior SARS-CoV-2 Infection on COVID-19 Vaccine Effectiveness in Children and Adolescents in Norway and Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Data Sources
2.2. Study Design and Participants
2.3. Exposure Definitions
2.3.1. Vaccine-Induced Immunity with One Dose
2.3.2. Hybrid Immunity and Vaccine-Induced Immunity with Two Doses
2.4. Follow-Up and Outcomes
2.5. Covariates Definition
2.6. Statistical Analysis
2.7. Subgroup and Sensitivity Analysis
3. Results
3.1. Vaccine-Induced Immunization with a Single Dose
3.2. Hybrid Immunity Versus Vaccine-Induced Immunity with Two Doses
4. Discussion
4.1. Strengths and Limitations for the Norwegian Database
4.2. Strengths and Limitations for the Pedianet Database in the Veneto Region, Italy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VoC | Variant of Concern |
NPR | Norwegian Patient Registry |
KUHR | Norway Control and Payment of Health Reimbursement |
MSIS | Norwegian Surveillance System for Communicable Disease |
SYSVAK | Norwegian Immunization Registry |
SSB | Statistics Norway |
FPs | Family Paediatricians |
ADI | Area Deprivation Index |
SMDs | Standardized Mean Differences |
95% CI | 95% Confidence Interval |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
References
- Cominarty Approval by EMA. May 2021. Available online: https://www.aifa.gov.it/documents/20142/1289823/2021.05.28_com-EMA_Comirnaty_approvato_12_15_anni_EN.pdf (accessed on 18 July 2023).
- Spikevax Approval by EMA. July 2021. Available online: https://www.aifa.gov.it/documents/20142/1289823/2021.07.23_com-EMA_COVID-19_vaccine_Spikevax_EN.pdf (accessed on 18 July 2023).
- Italian Drug Agency. Extension of Therapeutic Indications of Medicinal Specialties. Available online: https://www.aifa.gov.it/documents/20142/1289678/Det_73-2021_est_COMIRNATY.pdf (accessed on 9 August 2023).
- Italian Ministry of Health. COVID-19 Vaccines. Available online: https://www.salute.gov.it/portale/p5_1_2.jsp?lingua=italiano&id=255#:~:text=Il%201%C2%B0%20dicembre%20l,e%20con%20formulazione%20specifica (accessed on 8 August 2022).
- Italian Ministry of Health. Available online: https://www.salute.gov.it/reportVacciniAntiCovid/ (accessed on 18 July 2023).
- Statista. Available online: https://www.statista.com/statistics/1264088/share-of-population-vaccinated-against-covid-19-in-italy-by-age-group/ (accessed on 2 May 2024).
- Orangzeb, S.; Desalegn, A.; Trinh, N.T.H.; Zhao, J.; Nordeng, H.; Lupattelli, A. COVID-19 vaccine uptake among children and adolescents in Norway: A comprehensive registry-based cohort study of over 800,000 individuals. Vaccine 2024, 42, 3420–3428. [Google Scholar] [CrossRef]
- Piché-Renaud, P.P.; Swayze, S.; Buchan, S.A.; Wilson, S.E.; Austin, P.C.; Morris, S.K.; Nasreen, S.; Schwartz, K.L.; Tadrous, M.; Thampi, N.; et al. COVID-19 Vaccine Effectiveness Against Omicron Infection and Hospitalization. Pediatrics 2023, 151, e2022059513. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Shahrbabak, E.; Di Chiara, C.; Farrar, D.S.; Abu Fadaleh, S.M.; Peresin, J.; Low, B.; Avelar-Rodriguez, D.; Orkin, J.; Science, M.; Piché-Renaud, P.P.; et al. COVID-19 vaccine acceptance and uptake among caregivers of children aged 5-11 years in Ontario, Canada: A cross-sectional survey. Vaccine 2024, 42, 3974–3980. [Google Scholar] [CrossRef]
- Walter, E.B.; Talaat, K.R.; Sabharwal, C.; Gurtman, A.; Lockhart, S.; Paulsen, G.C.; Barnett, E.D.; Muñoz, F.M.; Maldonado, Y.; Pahud, B.A.; et al. Evaluation of the BNT162b2 COVID-19 Vaccine in Children 5 to 11 Years of Age. N. Engl. J. Med. 2022, 386, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.Y.; Barda, N.; Leshchinsky, M.; Kepten, E.; Hernán, M.A.; Lipsitch, M.; Dagan, N.; Balicer, R.D. Effectiveness of BNT162b2 Vaccine against Delta Variant in Adolescents. N. Engl. J. Med. 2021, 385, 2101–2103. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.A.; Campbell, H.; Stowe, J.; Seghezzo, G.; Simmons, R.; Lacy, J.; Bukasa, A.; O’Boyle, S.; Ramsay, M.E.; Brown, K.; et al. Risk of SARS-CoV-2 reinfections in children: A prospective national surveillance study between January, 2020, and July, 2021, in England. Lancet Child Adolesc. Health 2022, 6, 384–392. [Google Scholar] [CrossRef]
- Medic, S.; Anastassopoulou, C.; Lozanov-Crvenkovic, Z.; Dragnic, N.; Petrovic, V.; Ristic, M.; Pustahija, T.; Tsakris, A.; Ioannidis, J.P.A. Incidence, Risk, and Severity of SARS-CoV-2 Reinfections in Children and Adolescents Between March 2020 and July 2022 in Serbia. JAMA Netw. Open 2023, 6, e2255779. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.; Everhart, K.; Oyeniran, S.J.; Mejias, A.; Leber, A.L. SARS-CoV-2 Reinfection With Different SARS-CoV-2 Variants in Children, Ohio, United States. J. Pediatr. Infect. Dis. Soc. 2023, 12, 198–204. [Google Scholar] [CrossRef]
- Altarawneh, H.N.; Chemaitelly, H.; Ayoub, H.H.; Hasan, M.R.; Coyle, P.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Al-Kanaani, Z.; Al-Kuwari, E.; et al. Protective Effect of Previous SARS-CoV-2 Infection against Omicron BA.4 and BA.5 Subvariants. N. Engl. J. Med. 2022, 387, 1620–1622. [Google Scholar] [CrossRef]
- Gazit, S.; Saciuk, Y.; Perez, G.; Peretz, A.; Ben-Tov, A.; Stuart, E.A.; Patalon, T. Hybrid immunity against reinfection with SARS-CoV-2 following a previous SARS-CoV-2 infection and single dose of the BNT162b2 vaccine in children and adolescents: A target trial emulation. Lancet Microbe 2023, 4, e495–e505. [Google Scholar] [CrossRef]
- Bakken, I.J.; Ariansen, A.M.S.; Knudsen, G.P.; Johansen, K.I.; Vollset, S.E. The Norwegian Patient Registry and the Norwegian Registry for Primary Health Care: Research potential of two nationwide health-care registries. Scand. J. Public Health 2020, 48, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Cantarutti, A.; Giaquinto, C. Pedianet Database. In Databases for Pharmaco-Epidemiological Research; Sturkenboom, M., Schink, T., Eds.; Springer Series on Epidemiology and Public Health; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Epidemiology for Public Health. Sorveglianza Integrata COVID-19: I Principali Dati Nazionali. Available online: https://www.epicentro.iss.it/coronavirus/sars-cov-2-sorveglianza-dati (accessed on 7 March 2024).
- Regione del Veneto–ALLEGATO C alla Dgr n. 4535 del 28 Dicembre 2007. Available online: https://bur.regione.veneto.it/BurvServices/pubblica/Download.aspx?name=4535_AllegatoC_203062.pdf&type=9&storico=False (accessed on 23 May 2025).
- Voss, W.N.; Mallory, M.A.; Byrne, P.O.; Marchioni, J.M.; Knudson, S.A.; Powers, J.M.; Leist, S.R.; Dadonaite, B.; Townsend, D.R.; Kain, J.; et al. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep. Med. 2024, 5, 101668. [Google Scholar] [CrossRef]
- Smith, P.J.; Humiston, S.G.; Parnell, T.; Vannice, K.S.; Salmon, D.A. The association between intentional delay of vaccine administration and timely childhood vaccination coverage. Public Health Rep. 2010, 125, 534–541. [Google Scholar] [CrossRef]
- Report Esteso ISS COVID-19: Sorveglianza, Impatto Delle Infezioni ed Efficacia Vaccinale. Published on 2022 June 3. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_31-maggio-2022.pdf (accessed on 6 July 2022).
- Rosano, A.; Pacelli, B.; Zengarini, N.; Costa, G.; Cislaghi, C.; Caranci, N. Aggiornamento e revisione dell’indice di deprivazione italiano 2011 a livello di sezione di censimento [Update and review of the 2011 Italian deprivation index calculated at the census section level]. Epidemiol. E Prev. 2020, 44, 162–170. [Google Scholar] [CrossRef]
- Chen, C.; Nadeau, S.; Yared, M.; Voinov, P.; Xie, N.; Roemer, C.; Stadler, T. CoV-Spectrum: Analysis of globally shared SARS-CoV-2 data to identify and characterize new variants. Bioinformatics 2022, 38, 1735–1737. [Google Scholar] [CrossRef]
- Durán, C.E.; Riefolo, F.; Gini, R.; Barbieri, E.; Messina, D.; Garcia, P.; Martin, M.; Villalobos, F.; Stona, L.; Carreras, J.-J.; et al. Incidence of severe and non-severe SARS-CoV-2 infections in children and adolescents: A population-based cohort study using six healthcare databases from Italy, Spain, and Norway. Eur. J. Pediatr. 2024, 184, 6. [Google Scholar] [CrossRef] [PubMed]
- Carazo, S.; Skowronski, D.M.; Brisson, M.; Sauvageau, C.; Brousseau, N.; Gilca, R.; Ouakki, M.; Barkati, S.; Fafard, J.; Talbot, D.; et al. Estimated Protection of Prior SARS-CoV-2 Infection Against Reinfection With the Omicron Variant Among Messenger RNA-Vaccinated and Nonvaccinated Individuals in Quebec, Canada. JAMA Netw. Open 2022, 5, e2236670. [Google Scholar] [CrossRef]
- Di Chiara, C.; Cantarutti, A.; Costenaro, P.; Donà, D.; Bonfante, F.; Cosma, C.; Ferrarese, M.; Cozzani, S.; Petrara, M.R.; Carmona, F.; et al. Long-term Immune Response to SARS-CoV-2 Infection Among Children and Adults After Mild Infection. JAMA Netw. Open 2022, 5, e2221616. [Google Scholar] [CrossRef]
- Gazit, S.; Shlezinger, R.; Perez, G.; Lotan, R.; Peretz, A.; Ben-Tov, A.; Herzel, E.; Alapi, H.; Cohen, D.; Muhsen, K.; et al. The Incidence of SARS-CoV-2 Reinfection in Persons With Naturally Acquired Immunity With and Without Subsequent Receipt of a Single Dose of BNT162b2 Vaccine: A Retrospective Cohort Study. Ann. Intern. Med. 2022, 175, 674–681. [Google Scholar] [CrossRef]
- Rothoeft, T.; Maier, C.; Talarico, A.; Hoffmann, A.; Schlegtendal, A.; Lange, B.; Petersmann, A.; Denz, R.; Timmesfeld, N.; Toepfner, N.; et al. Natural and hybrid immunity after SARS-CoV-2 infection in children and adolescents. Infection 2024, 52, 1449–1458. [Google Scholar] [CrossRef]
- Di Chiara, C.; Cantarutti, A.; Raffaella Petrara, M.; Bonfante, F.; Benetti, E.; Boracchini, R.; Bosa, L.; Carmona, F.; Cosma, C.; Cotugno, N.; et al. Stronger and durable SARS-CoV-2 immune response to mRNA vaccines in 5-11 years old children with prior COVID-19. Vaccine 2024, 42, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Padoan, A.; Cosma, C.; Bonfante, F.; Della Rocca, F.; Barbaro, F.; Santarossa, C.; Dall’Olmo, L.; Pagliari, M.; Bortolami, A.; Cattelan, A.; et al. Neutralizing antibody titers six months after Comirnaty vaccination: Kinetics and comparison with SARS-CoV-2 immunoassays. Clin. Chem. Lab. Med. 2021, 60, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Desmecht, S.; Tashkeev, A.; El Moussaoui, M.; Marechal, N.; Perée, H.; Tokunaga, Y.; Fombellida-Lopez, C.; Polese, B.; Legrand, C.; Wéry, M.; et al. Kinetics and Persistence of the Cellular and Humoral Immune Responses to BNT162b2 mRNA Vaccine in SARS-CoV-2-Naive and -Experienced Subjects: Impact of Booster Dose and Breakthrough Infections. Front. Immunol. 2022, 13, 863554. [Google Scholar] [CrossRef]
- Camporesi, A.; Morello, R.; La Rocca, A.; Zampino, G.; Vezzulli, F.; Munblit, D.; Raffaelli, F.; Valentini, P.; Buonsenso, D. Characteristics and predictors of Long COVID in children: A 3-year prospective cohort study. eClinicalMedicine 2024, 76, 102815. [Google Scholar] [CrossRef]
- Lal, P.; Gupta, S. Psychological Impact of COVID-19 on Children and Adolescents: A Narrative Review of Mental Health Challenges, Interventions, and Long-Term Trajectories. Cureus 2025, 17, e81840. [Google Scholar] [CrossRef]
- Di Chiara, C.; Ferrarese, M.; Boracchini, R.; Cantarutti, A.; Tibaldo, A.L.; Stefanni, C.; Donà, D.; De Pieri, M.; Raffagnato, A.; Tascini, B.; et al. Long-term neuropsychiatric and neuropsychological impact of the pandemic in Italian COVID-19 family clusters, including children and parents. PLoS ONE 2025, 20, e0321366. [Google Scholar] [CrossRef]
- Zhang, B.; Thacker, D.; Zhou, T.; Zhang, D.; Lei, Y.; Chen, J.; Chrischilles, E.A.; Christakis, D.A.; Fernandez, S.; Garg, V.; et al. Cardiovascular post-acute sequelae of SARS-CoV-2 in children and adolescents: Cohort study using electronic health records. Nat. Commun. 2025, 16, 3445. [Google Scholar] [CrossRef] [PubMed]
- Dati Vaccinazioni Regione Veneto, Italia. Available online: https://www.regione.veneto.it/dati-vaccinazioni/pdf/Vaccinazioni%20al%2030-09-2023.pdf (accessed on 21 October 2023).
- Ratajczak, P.; Banach, Z.; Kopciuch, D.; Paczkowska, A.; Zaprutko, T.; Krawczyk, J.; Maciuszek-Bartkowska, B.; Kus, K. Tozinameran (Pfizer, BioNTech) and Elasomeran (Moderna) Efficacy in COVID-19-A Systematic Review of Randomised Controlled Trial Studies. Healthcare 2023, 11, 1532. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, Y.; Pickering, J.; Bowen, A.C.; Short, K.R. The role of children in transmission of SARS-CoV-2 variants of concern within households: An updated systematic review and meta-analysis, as at 30 June 2022. Euro Surveill. 2023, 28, 2200624. [Google Scholar] [CrossRef]
A | ||||||
---|---|---|---|---|---|---|
Primary Aim | ||||||
Overall | Exposed to the 1st Dose of Vax | Unexposed | SMDs | |||
(N = 626,537) | (N = 146,472) | (N = 146,472) | ||||
Sex—N (%) | M.V. | |||||
Female | 304,560 (48.6) | 71,547 (48.8) | 71,547 (48.8) | |||
Male | 321,977 (51.4) | 75,195 (51.2) | 75,195 (51.2) | |||
Age class—N (%) | M.V. | |||||
Children (5–11 yr.) | 435,546 (69.5) | 6933 (4.7) | 6933 (4.7) | |||
Adolescents (12–15 yr.) | 190,991 (30.5) | 139,809 (95.3) | 139,809 (95.3) | |||
Parental vaccination | ||||||
Yes | 582,943 (93.0) | 146,007 (99.5) | 146,007 (99.5) | M.V. | ||
No | 43,594 (7.0) | 735 (0.5) | 735 (0.5) | |||
Number of outpatient visits | ||||||
0 | 18,258 (12.4) | 19,987 (13.6) | −0.036 | |||
1–5 | 82,545 (56.3) | 80,892 (55.1) | 0.024 | |||
6–10 | 31,167 (21.2) | 31,361 (21.3) | −0.002 | |||
≥11 | 14,772 (10.7) | 14,502 (9.9) | 0.026 | |||
Number of hospitalizations | ||||||
0 | 142,004 (96.8) | 142,324 (97.0) | −0.011 | |||
1 | 3833 (2.6) | 3713 (2.5) | 0.006 | |||
≥2 | 905 (0.6) | 705 (0.5) | 0.014 | |||
Previous comorbidities in the previous 10 years—Yes (%) ∫ | 182,481 (29.1) | 46,272 (31.5) | 45,237 (30.8) | - | ||
Previous comorbidities in the previous 5 year—Yes (%) ∫ | 134,639 (21.5) | 32,617 (22.2) | 31,995 (21.8) | - | ||
Time Since Last Infection in mo.—Median [IQR] ¥ | 6.5 (4.7–10.3) | 3.4 (0.9–7.0) | ||||
Children with Previous Infection—N (%) | ||||||
No—SARS-CoV-2-naïve | 143,822 (98.0) | 133,921 (91.3) | 0.301 | |||
Yes—Recent SARS-CoV-2 Infection | 2542 (1.7) | 12,424 (8.5) | −0.313 | |||
Yes—Past SARS-CoV-2 Infection | 378 (0.3) | 397 (0.3) | −0.003 | |||
B | ||||||
Gap 21–50 | Gap 21–150 | |||||
Vaccine Immunization | Hybrid Immunization | SMDs | Vaccine Immunization | Hybrid Immunization | SMDs | |
(N = 212) | (N = 212) | (N = 12,873) | (N = 12,873) | |||
Sex—N (%) | M.V. | M.V. | ||||
Female | 97 (45.8) | 97 (45.8) | 6588 (51.2) | 6588 (51.2) | ||
Male | 115 (54.2) | 115 (54.2) | 6285 (48.8) | 6285 (48.8) | ||
Age class—N (%) | M.V. | M.V. | ||||
Children (5–11 yr.) | 47 (22.2) | 47 (22.2) | 710 (5.5) | 710 (5.5) | ||
Adolescents (12–15 yr.) | 165 (77.8) | 165 (77.8) | 12,163 (94.5) | 12,163 (94.5) | ||
Parental Vaccination | ||||||
Yes | 211 (99.5) | 212 (99.5) | M.V. | 12,851 (99.8) | 12,851 (99.8) | M.V. |
No | <5 (0.5) | <5 (0.5) | 22 (0.2) | 22 (0.2) | ||
Number of Hospitalizations | ||||||
0 | 192 (90.6) | 208 (98.1) | −0.329 | 12,288 (95.5) | 12,465 (96.8) | −0.068 |
1 | 13 (6.1) | 4 (1.9) | 0.216 | 431 (3.4) | 312 (2.4) | 0.060 |
≥2 | 7 (3.3) | 0 | 0.261 | 154 (1.2) | 96 (0.8) | 0.040 |
Number of Outpatient Visits | ||||||
0 | 36 (17.0) | 7 (3.3) | 0.466 | 1517 (11.8) | 633 (4.9) | 0.251 |
1–5 | 96 (45.3) | 92 (43.4) | 0.038 | 6775 (52.6) | 6017 (46.7) | 0.118 |
6–10 | 32 (15.1) | 76 (35.9) | −0.491 | 2841 (22.1) | 4011 (31.2) | −0.207 |
≥11 | 48 (22.6) | 37 (17.5) | 0.128 | 1740 (13.5) | 2212 (17.2) | −0.103 |
Previous Comorbidities in the Previous 10 years—Yes (%) ∫ | 82 (38.7) | 77 (36.3) | - | 4522 (35.1) | 4070 (31.6) | - |
Previous Comorbidities in the Previous 5 year—Yes (%) ∫ | 72 (34.0) | 63 (29.7) | - | 3370 (26.2) | 3063 (23.8) | - |
Primary Aim | Secondary Aim | ||||||
---|---|---|---|---|---|---|---|
Overall | 1-Dose Vaccination | Unvaccinated | SMDs | Vaccine Immunization | Hybrid Immunization | SMDs | |
(N = 38,938) | (N = 15,742) | (N = 15,742) | (N = 498) | (N = 498) | |||
Sex—N (%) | M.V. | M.V. | |||||
Female | 18,774 (48.2) | 7606 (48.3) | 7606 (48.3) | 232 (46.2) | 232 (46.2) | ||
Male | 20,164 (51.8) | 8136 (51.7) | 8136 (51.7) | 270 (53.8) | 270 (53.8) | ||
Age Class—N (%) | M.V. | M.V. | |||||
Children (5–11 years) | 31,938 (82) | 11,959 (76) | 11,959 (76) | 317 (63.1) | 317 (63.1) | ||
Adolescents (12–15 years) | 7000 (18) | 3783 (24) | 3783 (24) | 185 (36.9) | 185 (36.9) | ||
Area Deprivation Index—N (%) | M.V. | M.V. | |||||
1-Lowest | 7183 (18.5) | 3127 (19.9) | 3127 (19.9) | 92 (18.3) | 92 (18.3) | ||
2 | 6998 (18) | 2983 (19) | 2983 (19) | 116 (23.1) | 116 (23.1) | ||
3 | 6447 (16.6) | 2561 (16.3) | 2561 (16.3) | 83 (16.5) | 83 (16.5) | ||
4 | 5868 (15.1) | 2207 (14) | 2207 (14) | 69 (13.8) | 69 (13.8) | ||
5-Highest | 5554 (14.3) | 2077 (13.2) | 2077 (13.2) | 73 (14.5) | 73 (14.5) | ||
Missing | 6888 (17.7) | 2787 (17.7) | 2787 (17.7) | 69 (13.7) | 69 (13.7) | ||
Number of Outpatient Visits | |||||||
0 | - | 4851 (30.8) | 4667 (29.7) | 0.023 | 431 (86.6) | 410 (82.3) | 0.119 |
1–5 | - | 7711 (48.5) | 7883 (50.1) | −0.032 | 44 (8.8) | 48 (9.6) | −0.027 |
6–10 | - | 2396 (15.2) | 2363 (15) | 0.005 | 23 (4.6) | 40 (8.1) | −0.144 |
≥11 | - | 784 (5) | 829 (5.3) | −0.013 | - | - | |
Previous Comorbidities—Yes (%) ∫ | 10,641(27.3) | 4265 (27) | 4289 (27.3) | −0.007 | 168 (33.5) | 163 (32.5) | 0.021 |
Time Since Last Infection in months—Median [IQR] ¥ | - | 9.6 (5.9–12.5) | 2.7 (0.8–9.6) | - | 8.2 (5.4–9.8) | - | |
Children with Previous Infection—N (%) | - | ||||||
No—SARS-CoV-2-naïve | - | 14,160 (89.9) | 12,878 (81.8) | 0.23 | 498 (100) | - | - |
Yes—Recent SARS-CoV-2 Infection | - | 1113 (7.1) | 2413 (15.3) | −0.26 | - | 502 (100) | - |
Yes—Past SARS-CoV-2 Infection | - | 469 (3) | 451 (2.9) | 0.006 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, E.; Trinh, N.T.H.; Di Chiara, C.; Corrao, G.; Boracchini, R.; Rosa, E.; Liberati, C.; Donà, D.; Lupattelli, A.; Giaquinto, C.; et al. Impact of Prior SARS-CoV-2 Infection on COVID-19 Vaccine Effectiveness in Children and Adolescents in Norway and Italy. Vaccines 2025, 13, 698. https://doi.org/10.3390/vaccines13070698
Barbieri E, Trinh NTH, Di Chiara C, Corrao G, Boracchini R, Rosa E, Liberati C, Donà D, Lupattelli A, Giaquinto C, et al. Impact of Prior SARS-CoV-2 Infection on COVID-19 Vaccine Effectiveness in Children and Adolescents in Norway and Italy. Vaccines. 2025; 13(7):698. https://doi.org/10.3390/vaccines13070698
Chicago/Turabian StyleBarbieri, Elisa, Nhung T. H. Trinh, Costanza Di Chiara, Giovanni Corrao, Riccardo Boracchini, Ester Rosa, Cecilia Liberati, Daniele Donà, Angela Lupattelli, Carlo Giaquinto, and et al. 2025. "Impact of Prior SARS-CoV-2 Infection on COVID-19 Vaccine Effectiveness in Children and Adolescents in Norway and Italy" Vaccines 13, no. 7: 698. https://doi.org/10.3390/vaccines13070698
APA StyleBarbieri, E., Trinh, N. T. H., Di Chiara, C., Corrao, G., Boracchini, R., Rosa, E., Liberati, C., Donà, D., Lupattelli, A., Giaquinto, C., & Cantarutti, A. (2025). Impact of Prior SARS-CoV-2 Infection on COVID-19 Vaccine Effectiveness in Children and Adolescents in Norway and Italy. Vaccines, 13(7), 698. https://doi.org/10.3390/vaccines13070698