Enhanced HIV-1 Neutralizing Antibody Breadth in HTLV-2 Co-Infected Individuals: Influence of Antiretroviral Regimen and B Cell Subset Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Immunoglobulin G Purification and Neutralization Assay
2.3. Phenotyping of B Lymphocyte Subsets
2.4. Statistical Analysis
3. Results
3.1. Impact of Ritonavir-Boosted Regimens
3.2. HTLV-2 Co-Infection and Neutralization Scores in the Absence of r-PIs
3.3. Lymphocyte B Subsets and Neutralizing Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, W.W.; Ishak, R.; Zhu, S.W.; Novoa, P.; Eiraku, N.; Takahashi, H.; da Costa Ferreira, M.; Azevedo, V.; Ishak, M.O.; da Costa Ferreira, O.; et al. Human T Lymphotropic Virus Type II (HTLV-II): Epidemiology, Molecular Properties, and Clinical Features of Infection. JAIDS J. Acquir. Immune Defic. Syndr. 1996, 13, S204–S214. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, A.M.; Salemi, M.; Van Brussel, M.; Liu, H.F.; Van Laethem, K.; Van Ranst, M.; Michels, L.; Desmyter, J.; Goubau, P. African Origin of Human T-Lymphotropic Virus Type 2 (HTLV-2) Supported by a Potential New HTLV-2d Subtype in Congolese Bambuti Efe Pygmies. J. Virol. 1998, 72, 4327–4340. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.B.; Araújo, A.P.S.; Souza, A.P.C.; Gomes, C.M.; Silva-Oliveira, G.C.; Martins, L.C.; Fischer, B.; Machado, L.F.A.; Vallinoto, A.C.R.; Ishak, R.; et al. Human T-lymphotropic virus 1 and 2 among people who used illicit drugs in the state of Pará, northern Brazil. Sci. Rep. 2019, 9, 14750. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Roger, E. Hepatitis C virus/human T lymphotropic virus 1/2 co-infection: Regional burden and virological outcomes in people who inject drugs. World J. Virol. 2016, 5, 68–72. [Google Scholar] [CrossRef]
- Hisada, M.; Chatterjee, N.; Zhang, M.; Battjes, R.J.; Goedert, J.J. Increased hepatitis C virus load among injection drug users infected with human immunodeficiency virus and human T lymphotropic virus type II. J. Infect. Dis. 2003, 188, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Pilotti, E.; Bianchi, M.V.; De Maria, A.; Bozzano, F.; Romanelli, M.G.; Bertazzoni, U.; Casoli, C. HTLV-1/-2 and HIV-1 co-infections: Retroviral interference on host immune status. Front. Microbiol. 2013, 4, 372. [Google Scholar] [CrossRef]
- Alves, F.A.; Campos, K.; Lemos, M.F.; Moreira, R.C.; Caterino-De-Araujo, A. Hepatitis C viral load in HCV-monoinfected and HCV/HIV-1-, HCV/HTLV-1/-2-, and HCV/HIV/HTLV-1/-2-co-infected patients from São Paulo, Brazil. Braz. J. Infect. Dis. 2018, 22, 123–128. [Google Scholar] [CrossRef]
- Turci, M.; Pilotti, E.; Ronzi, P.; Magnani, G.; Boschini, A.; Parisi, S.G.; Zipeto, D.; Lisa, A.; Casoli, C.; Bertazzoni, U. Coinfection with HIV-1 and Human T-Cell Lymphotropic Virus Type II in Intravenous Drug Users Is Associated with Delayed Progression to AIDS. JAIDS J. Acquir. Immune Defic. Syndr. 2006, 41, 100–106. [Google Scholar] [CrossRef]
- Beilke, M.A.; Theall, K.P.; Megan, O.; Clayton, J.L.; Benjamin, S.M.; Winsor, E.L.; Kissinger, P.J. Clinical Outcomes and Disease Progression among Patients Coinfected with HIV and Human T Lymphotropic Virus Types 1 and 2. Clin. Infect. Dis. 2004, 39, 256–263. [Google Scholar] [CrossRef]
- Montaño-Castellón, I.; Marconi, C.S.C.; Saffe, C.; Brites, C. Clinical and Laboratory Outcomes in HIV-1 and HTLV-1/2 Coinfection: A Systematic Review. Front. Public Health 2022, 10, 820727. [Google Scholar] [CrossRef]
- Oo, Z.; Barrios, C.S.; Castillo, L.; Beilke, M.A. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections. J. Med. Virol. 2015, 87, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Abad-Fernández, M.; Hernández-Walias, F.J.; Ruiz de León, M.J.; Vivancos, M.J.; Pérez-Elías, M.J.; Moreno, A.; Casado, J.L.; Quereda, C.; Dronda, F.; Moreno, S.; et al. HTLV-2 enhances CD8+ T cell-mediated HIV-1 inhibition and reduces HIV-1 integrated proviral load in people living with HIV-1. Viruses 2022, 14, 2472. [Google Scholar] [CrossRef] [PubMed]
- Abad-Fernández, M.; Moreno, A.; Dronda, F.; Del Campo, S.; Quereda, C.; Casado, J.; Pérez-Elías, M.J.; Moreno, S.; Vallejo, A. Delayed liver fibrosis in HTLV-2-infected patients co-infected with HIV-1 and hepatitis C virus with suppressive antiretroviral therapy. AIDS 2015, 29, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Doria-Rose, N.A.; Klein, R.M.; Daniels, M.G.; O’Dell, S.; Nason, M.; Lapedes, A.; Bhattacharya, T.; Migueles, S.A.; Wyatt, R.T.; Korber, B.T.; et al. Breadth of human immunodeficiency virus-specific neutralizing activity in sera: Clustering analysis and association with clinical variables. J. Virol. 2010, 84, 1631–1636. [Google Scholar] [CrossRef]
- Borrow, P.; Moody, M.A. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol. Rev. 2017, 275, 62–78. [Google Scholar] [CrossRef]
- Moir, S.; Malaspina, A.; Ogwaro, K.M.; Donoghue, E.T.; Hallahan, C.W.; Ehler, L.A.; Liu, S.; Adelsberger, J.; Lapointe, R.; Hwu, P.; et al. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc. Natl. Acad. Sci. USA 2001, 98, 10362–10367. [Google Scholar] [CrossRef]
- Moir, S.; Fauci, A.S. B-cell responses to HIV infection. Immunol. Rev. 2017, 275, 33–48. [Google Scholar] [CrossRef]
- Ferreira, C.B.; Merino-Mansilla, A.; Llano, A.; Perez, I.; Crespo, I.; Llinas, L.; Garcia, F.; Gatell, J.M.; Yuste, E.; Sanchez-Merino, V. Evolution of broadly cross-reactive HIV-1-neutralizing activity: Therapy-associated decline, positive association with detectable viremia, and partial restoration of B-cell subpopulations. J. Virol. 2013, 87, 12227–12236. [Google Scholar] [CrossRef]
- Yuste, E.; Gil, H.; Garcia, F.; Sanchez-Merino, V. Antiretroviral therapy with ritonavir-boosted atazanavir- and lopinavir-containing regimens correlates with diminished HIV-1 neutralization. Vaccines 2024, 12, 1176. [Google Scholar] [CrossRef]
- Freed, E.O. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol. 2015, 13, 484–496. [Google Scholar] [CrossRef]
- Marin, R.C.; Behl, T.; Negrut, N.; Bungau, S. Management of Antiretroviral Therapy with Boosted Protease Inhibitors-Darunavir/Ritonavir or Darunavir/Cobicistat. Biomedicines 2021, 9, 313. [Google Scholar] [CrossRef]
- Azzman, N.; Gill, M.S.A.; Hassan, S.S.; Christ, F.; Debyser, Z.; Mohamed, W.A.S.; Ahemad, N. Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review. Rev. Med. Virol. 2024, 34, e2529. [Google Scholar] [CrossRef]
- Amitai, A.; Chakraborty, A.K.; Kardar, M. The low spike density of HIV may have evolved because of the effects of T helper cell depletion on affinity maturation. PLoS Comput. Biol. 2018, 14, e1006408. [Google Scholar] [CrossRef]
- Medina-Ramirez, M.; Sanchez-Merino, V.; Sanchez-Palomino, S.; Merino-Mansilla, A.; Ferreira, C.B.; Perez, I.; Gonzalez, N.; Alvarez, A.; Alcocer-Gonzalez, J.M.; Garcia, F.; et al. Broadly cross-neutralizing antibodies in HIV-1 patients with undetectable viremia. J. Virol. 2011, 85, 5804–5813. [Google Scholar] [CrossRef]
- Bertagnolli, L.N.; Varriale, J.; Sweet, S.; Brockhurst, J.; Simonetti, F.R.; White, J.; Beg, S.; Lynn, K.; Mounzer, K.; Frank, I.; et al. Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. USA 2020, 117, 32066–32077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Singh, M.; Becker, V.A.; Croft, J.; Tsybovsky, Y.; Gopan, V.; Seo, Y.; Liu, Q.; Rogers, D.; Miao, H.; et al. Inclusion of a retroviral protease enhances the immunogenicity of VLP-forming mRNA vaccines against HIV-1 or SARS-CoV-2 in mice. Sci. Transl. Med. 2025, 17, eadt9576. [Google Scholar] [CrossRef] [PubMed]
- Amu, S.; Lavy-Shahaf, G.; Cagigi, A.; Hejdeman Bo Nozza, S.; Lopalco, L.; Mehr, R.; Chiodi, F. Frequency and phenotype of B cell subpopulations in young and aged HIV-1 infected patients receiving ART. Retrovirology 2014, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Pensieroso, S.; Galli, L.; Nozza, S.; Ruffin, N.; Castagna, A.; Tambussi, G.; Hejdeman, B.; Misciagna, D.; Riva, A.; Malnati, M.; et al. B-cell subset alterations and correlated factors in HIV-1 infection. AIDS 2013, 27, 1209–1217. [Google Scholar] [CrossRef]
- Rinaldi, S.; Pallikkuth, S.; George, V.K.; de Armas, L.R.; Pahwa, R.; Sanchez, C.M.; Pallin, M.F.; Pan, L.; Cotugno, N.; Dickinson, G.; et al. Paradoxical aging in HIV: Immune senescence of B cells is most prominent in young age. Aging 2017, 9, 1307–1325. [Google Scholar] [CrossRef]
- Joyner, A.S.; Willis, J.R.; Crowe, J.E., Jr.; Aiken, C. Maturation-induced cloaking of neutralization epitopes on HIV-1 particles. PLoS Pathog. 2011, 7, e1002234. [Google Scholar] [CrossRef]
- Buckner, C.M.; Moir, S.; Ho, J.; Wang, W.; Posada, J.G.; Kardava, L.; Funk, E.K.; Nelson, A.K.; Li, Y.; Chun, T.W.; et al. Characterization of plasmablasts in the blood of HIV-infected viremic individuals: Evidence for nonspecific immune activation. J. Virol. 2013, 87, 5800–5811. [Google Scholar] [CrossRef] [PubMed]
- Morbach, H.; Eichhorn, E.M.; Liese, J.G.; Girschick, H.J. Reference values for B cell subpopulations from infancy to adulthood. Clin. Exp. Immunol. 2010, 162, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Buckner, C.M.; Ho, J.; Wang, W.; Chen, J.; Waldner, A.J.; Posada, J.G.; Kardava, L.; O’Shea, M.A.; Kottilil, S.; et al. B cells in early and chronic HIV infection: Evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 2010, 116, 5571–5579. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzadeh, E.; Etemad, B.; Lavine, C.L.; Garneau, L.; Li, Y.; Regan, J.; Wong, C.; Sharaf, R.; Connick, E.; Volberding, P.; et al. Autologous neutralizing antibodies increase with early antiretroviral therapy and shape HIV rebound after treatment interruption. Sci. Transl. Med. 2023, 15, eabq4490. [Google Scholar] [CrossRef] [PubMed]
- Roskin, K.M.; Jackson, K.J.; Lee, J.Y.; Hoh, R.A.; Joshi, S.A.; Hwang, K.K.; Bonsignori, M.; Pedroza-Pacheco, I.; Liao, H.X.; Moody, M.A.; et al. Aberrant B Cell Repertoire Selection Associated with HIV Neutralizing Antibody Breadth. Nat. Immunol. 2020, 21, 199–209. [Google Scholar] [CrossRef]
- Caterino-de-Araujo, A.; Campos, K.R.; Oliveira, L.M.S.; Rigato, P.O. Biomarkers in a cohort of HIV-infected patients single- or co-infected with HTLV-1, HTLV-2, and/or HCV: A cross-sectional, observational study. Viruses 2022, 14, 1955. [Google Scholar] [CrossRef]
- Cizmeci, D.; Lofano, G.; Rossignol, E.; Dugast, A.S.; Kim, D.; Cavet, G.; Nguyen, N.; Tan, Y.C.; Seaman, M.S.; Alter, G.; et al. Distinct Clonal Evolution of B Cells in HIV Controllers with Neutralizing Antibody Breadth. ELife 2021, 10, e62648. [Google Scholar] [CrossRef]
- Doria-Rose, N.A.; Klein, R.M.; Manion, M.M.; O’Dell, S.; Phogat, A.; Chakrabarti, B.; Hallahan, C.W.; Migueles, S.A.; Wrammert, J.; Ahmed, R.; et al. Frequency and phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells from Patients with Broadly Cross-Neutralizing Antibodies. J. Virol. 2009, 83, 188–199. [Google Scholar] [CrossRef]
HIV-1/HTLV-2 Co-Infected n = 27 | HIV-1 Only n = 38 | p Value | |
---|---|---|---|
Sex (female, n) | 7 (25%) | 13 (34%) | 0.589 |
Age (years, median [IQR]) | 47 [44–52] | 48 [45–53] | 0.356 |
Risk practice | IDU (100%) | IDU (100%) | - |
HCV antibodies | 100% | 100% | - |
HCV infection, n | 9 (36%) * | 22 (58%) | 0.092 |
HBsAg (−)/Anti-HBc (+), n HBsAg (+), n | 21 (77.7%) 1 (3.7%) | 30 (78.9%) 1 (2.6%) | 0.781 0.357 |
Years living with HIV, median [IQR] | 24 [20–26] | 21 [18–26] | 0.292 |
Years under ART, median [IQR] | 17 [13–20] | 17 [12–19] | 0.760 |
CD4 nadir (cells/mm3), median [IQR] | 91 [33–236] | 92 [41–138] | 0.392 |
CD4 T cell count (cells/mm3), median [IQR] | 601 [304–814] | 564 [374–833] | 0.938 |
CD8 T cell count (cells/mm3), median [IQR] | 1068 [803–1510] | 870 [637–1151] | 0.090 |
CD4/CD8 ratio, median [IQR] | 0.48 [0.33–0.80] | 0.67 [0.39–0.89] | 0.204 |
HIV-1 RNA | Undetectable | Undetectable | - |
ART for the last three-year period, n 3NRTI 2NRTI + 1 INI 2NRTI + 1 NNRTI 2NRTI + 1 PI 2NRTI + ritonavir-boosted PI | 10 (37.1%) 3 (11.1%) 2 (7.4%) 3 (11.1%) 9 (33.3%) | 8 (21%) 6 (15.8%) 12 (31.6%) 7 (18.4%) 5 (13.2%) |
Neutralization Score | Breadth Category | HIV-1 Only N = 18 | HIV-1/HTLV-2 Co-Infected N = 33 |
---|---|---|---|
14–18 10–13 5–9 1–4 0 | Elite Broad Cross Weak No neutralizer | 0 5 (15.1%) 11 (33.3%) 17 (51.5%) 0 | 1 (5.5%) 5 (27.7%) 9 (50%) 3 (16.6%) 0 |
Combined categories (Chi-square test) | |||
Elite + Broad + Cross (≥5) | 16 (48.5%) | 15 (83.4%) | |
Weak + No neutralizers (<5) | 17 (51.5%) | 3 (16.6%) | |
p = 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuste, E.; Ruiz-De-León, M.J.; Casado, J.L.; Moreno, A.; Vivancos, M.J.; Pérez-Elías, M.J.; Dronda, F.; Quereda, C.; Sánchez-Merino, V.; Vallejo, A. Enhanced HIV-1 Neutralizing Antibody Breadth in HTLV-2 Co-Infected Individuals: Influence of Antiretroviral Regimen and B Cell Subset Distribution. Vaccines 2025, 13, 639. https://doi.org/10.3390/vaccines13060639
Yuste E, Ruiz-De-León MJ, Casado JL, Moreno A, Vivancos MJ, Pérez-Elías MJ, Dronda F, Quereda C, Sánchez-Merino V, Vallejo A. Enhanced HIV-1 Neutralizing Antibody Breadth in HTLV-2 Co-Infected Individuals: Influence of Antiretroviral Regimen and B Cell Subset Distribution. Vaccines. 2025; 13(6):639. https://doi.org/10.3390/vaccines13060639
Chicago/Turabian StyleYuste, Eloisa, María J. Ruiz-De-León, José L. Casado, Ana Moreno, María J. Vivancos, María J. Pérez-Elías, Fernando Dronda, Carmen Quereda, Víctor Sánchez-Merino, and Alejandro Vallejo. 2025. "Enhanced HIV-1 Neutralizing Antibody Breadth in HTLV-2 Co-Infected Individuals: Influence of Antiretroviral Regimen and B Cell Subset Distribution" Vaccines 13, no. 6: 639. https://doi.org/10.3390/vaccines13060639
APA StyleYuste, E., Ruiz-De-León, M. J., Casado, J. L., Moreno, A., Vivancos, M. J., Pérez-Elías, M. J., Dronda, F., Quereda, C., Sánchez-Merino, V., & Vallejo, A. (2025). Enhanced HIV-1 Neutralizing Antibody Breadth in HTLV-2 Co-Infected Individuals: Influence of Antiretroviral Regimen and B Cell Subset Distribution. Vaccines, 13(6), 639. https://doi.org/10.3390/vaccines13060639