Longitudinal Immunoprofiling of the CD8+ T-Cell Response in SARS-CoV-2 mRNA Vaccinees and COVID-19 Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Cohorts’ Description
2.2. PBMC Preparation
2.3. Flow Cytometry
2.4. Sample Preparation for Bulk T-Cell Receptor (TCR) Sequencing
2.5. TCR Amplification
2.6. Library Preparation and Sequencing
2.7. Bioinformatical Analysis of Sequencing Results
2.8. Statistical Analysis
3. Results
3.1. Early Immune Response to SARS-CoV-2 Infection or Vaccination Showed Low and Similar CD8+ T-Cell Activation
3.2. Late CD8+ T-Cell Activation and Memory Profiles Showed Significant Differences Among SARS-CoV-2-Infected Patients and Vaccinated Individuals
3.3. Similar Overall TCR Clonal Diversity Was Observed Among SARS-CoV-2 Convalescence Patients and Vaccinees
3.4. Kinetics of T-Cell Activation and Clonal Expansion in Convalescent Patients
3.4.1. Activation Profile and Antigen-Specific CD8+ T Cells
3.4.2. TCR Diversity Between Patients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howley, P.M.; Knipe, D.M.; Cohen, J.L.; Damania, B.A. Volume 1: Emerging Viruses. In Fields Virology, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B., Whelan, S.P.J., Cohen, J.I., Enquist, L., Damania, B., Freed, E.O., Eds.; Wolters Kluwer: Ciudad de México, Mexico, 2023. [Google Scholar]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 28 November 2024).
- Kerr, S.; Bedston, S.; Cezard, G.; Sampri, A.; Murphy, S.; Bradley, D.T.; Morrison, K.; Akbari, A.; Whiteley, W.; Sullivan, C.; et al. Undervaccination and severe COVID-19 outcomes: Meta-analysis of national cohort studies in England, Northern Ireland, Scotland, and Wales. Lancet 2024, 403, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Tan-Lhernould, L.; Tamandjou, C.; Deschamps, G.; Platon, J.; Sommen, C.; Chereau, F.; du Châtelet, I.P.; Cauchemez, S.; Vaux, S.; Paireau, J. Impact of vaccination against severe COVID-19 in the French population aged 50 years and above: A retrospective population-based study. BMC Med. 2023, 21, 426. [Google Scholar] [CrossRef]
- Stoliaroff-Pepin, A.; Peine, C.; Herath, T.; Lachmann, J.; Hellenbrand, W.; Perriat, D.; Dörre, A.; Nitsche, A.; Michel, J.; Grossegesse, M.; et al. Vaccine effectiveness against severe COVID-19 during the Omicron wave in Germany: Results from the COViK study. Infection 2023, 51, 1093–1102. [Google Scholar] [CrossRef]
- Brisotto, G.; Muraro, E.; Montico, M.; Corso, C.; Evangelista, C.; Casarotto, M.; Caffau, C.; Vettori, R.; Cozzi, M.R.; Zanussi, S.; et al. IgG antibodies against SARS-CoV-2 decay but persist 4 months after vaccination in a cohort of healthcare workers. Clin. Chim. Acta 2021, 523, 476–482. [Google Scholar] [CrossRef]
- Tauzin, A.; Gong, S.Y.; Chatterjee, D.; Ding, S.; Painter, M.M.; Goel, R.R.; Beaudoin-Bussières, G.; Marchitto, L.; Boutin, M.; Laumaea, A.; et al. A boost with SARS-CoV-2 BNT162b2 mRNA vaccine elicits strong humoral responses independently of the interval between the first two doses. Cell Rep. 2022, 41, 111554. [Google Scholar] [CrossRef]
- Robles Navas, L.J.; Ortega Huete, J.J.; Juliá Sanchis, M.L.; Bravo Miró, J.S.; Sánchez, S.C.; Gasset, R.M. Estudio longitudinal de la respuesta de anticuerpos tras la vacunación contra el SARS-CoV-2 con la vacuna BNT162b2 de Pfizer-BioNtech. Adv. Lab. Med. 2023, 4, 303–307. [Google Scholar] [CrossRef]
- Jacobsen, H.; Strengert, M.; Maaß, H.; Ynga Durand, M.A.; Katzmarzyk, M.; Kessel, B.; Harries, M.; Rand, U.; Abassi, L.; Kim, Y.; et al. Diminished neutralization responses towards SARS-CoV-2 Omicron VoC after mRNA or vector-based COVID-19 vaccinations. Sci. Rep. 2022, 12, 19858. [Google Scholar] [CrossRef] [PubMed]
- Azarias, M.; Silva, D.; Nioche, P.; Soudaramourty, C.; Bull-Maurer, A.; Tiouajni, M.; Kong, D.; Zghidi-Abouzid, O.; Picard, M.; Mendes-Frias, A.; et al. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. Sci. Adv. 2023, 9, eadg2122. [Google Scholar] [CrossRef]
- World Health Organization. Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. Available online: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 15 January 2024).
- Drake, K.O.; Boyd, O.; Franceschi, V.B.; Colquhoun, R.M.; Ellaby, N.A.F.; Volz, E.M. Phylogenomic early warning signals for SARS-CoV-2 epidemic waves. eBioMedicine 2024, 100, 104939. [Google Scholar] [CrossRef]
- Ramirez, S.I.; Lopez, P.G.; Faraji, F.; Parikh, U.M.; Heaps, A.; Ritz, J.; Moser, C.; Eron, J.J.; Wohl, D.A.; Currier, J.S.; et al. Early antiviral CD4 and CD8 T cell responses and antibodies are associated with upper respiratory tract clearance of SARS-CoV-2. bioRxiv 2024. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK10757/ (accessed on 16 May 2025).
- Livak, F.; Burtrum, D.B.; Rowen, L.; Schatz, D.G.; Petrie, H.T. Brief Definitive Report Genetic Modulation of T Cell Receptor Gene Segment Usage during Somatic Recombination. J. Exp. Med. 2000, 192, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Robins, H.S.; Campregher, P.V.; Srivastava, S.K.; Wacher, A.; Turtle, C.J.; Kahsai, O.; Riddell, S.R.; Warren, E.H.; Carlson, C.S. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 2009, 114, 4099–4107. [Google Scholar] [CrossRef]
- Minervina, A.A.; Pogorelyy, M.V.; Komech, E.A.; Karnaukhov, V.K.; Bacher, P.; Rosati, E.; Franke, A.; Chudakov, D.M.; Mamedov, I.Z.; Lebedev, Y.B.; et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. eLife 2020, 9, e53704. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wang, Y.; Liu, D.; Shi, Y.; Zhang, J.; Liu, Y.; Lin, D.; Lin, J.; Hu, W.; et al. T-Cell Repertoire Characteristics of Asymptomatic and Re-Detectable Positive COVID-19 Patients. Front. Immunol. 2022, 12, 769442. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, F.; Zhu, Z.; Yu, M.; Jia, X.; Dai, H.; Wang, P.; Qiu, X.; Lu, Y.; Huang, J. Analysis of TCR repertoire by high-throughput sequencing indicates the feature of t cell immune response after SARS-CoV-2 infection. Cells 2022, 11, 68. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Jiang, S.; Fan, W.; Mo, C.; Gong, W.; Chen, H.; He, D.; Huang, J.; Ou, M.; et al. Comprehensive analysis of TCR repertoire of COVID-19 patients in different infected stage. Genes Genom. 2022, 44, 813–822. [Google Scholar] [CrossRef]
- Luo, L.; Liang, W.; Pang, J.; Xu, G.; Chen, Y.; Guo, X.; Wang, X.; Zhao, Y.; Lai, Y.; Liu, Y.; et al. Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discov. 2021, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Li, S.; Li, P.; Pan, W.; Wang, Q.; Feng, Y.; Mo, X.; Yan, Q.; Ye, X.; Luo, J.; et al. Longitudinal Analysis of T and B Cell Receptor Repertoire Transcripts Reveal Dynamic Immune Response in COVID-19 Patients. Front. Immunol. 2020, 11, 582010. [Google Scholar]
- Kim, I.S.; Kang, C.K.; Lee, S.J.; Lee, C.H.; Kim, M.; Seo, C.; Kim, G.; Lee, S.; Park, K.S.; Chang, E.; et al. Tracking antigen-specific TCR clonotypes in SARS-CoV-2 infection reveals distinct severity trajectories. J. Med. Virol. 2023, 95, e29199. [Google Scholar] [CrossRef]
- Aoki, H.; Kitabatake, M.; Abe, H.; Xu, P.; Tsunoda, M.; Shichino, S.; Hara, A.; Ouji-Sageshima, N.; Motozono, C.; Ito, T.; et al. CD8+ T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep. 2024, 43, 113887. [Google Scholar] [CrossRef] [PubMed]
- Koutsakos, M.; Reynaldi, A.; Lee, W.S.; Nguyen, J.; Amarasena, T.; Taiaroa, G.; Kinsella, P.; Liew, K.C.; Tran, T.; Kent, H.E.; et al. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity 2023, 56, 879–892.e4. [Google Scholar] [CrossRef]
- Mayer-Blackwell, K.; Ryu, H.; Codd, A.S.; Parks, K.R.; MacMillan, H.R.; Cohen, K.W.; Stewart, T.L.; Seese, A.; Lemos, M.P.; De Rosa, S.C.; et al. mRNA vaccination boosts S-specific T cell memory and promotes expansion of CD45RAint TEMRA-like CD8+ T cells in COVID-19 recovered individuals. Cell Rep. Med. 2023, 4, 101149. [Google Scholar] [CrossRef]
- Taus, E.; Hofmann, C.; Ibarrondo, F.J.; Gong, L.S.; Hausner, M.A.; Fulcher, J.A.; Krogstad, P.; Kitchen, S.G.; Ferbas, K.G.; Tobin, N.H.; et al. Persistent memory despite rapid contraction of circulating T Cell responses to SARS-CoV-2 mRNA vaccination. Front. Immunol. 2023, 14, 1100594. [Google Scholar] [CrossRef] [PubMed]
- Cordes, A.K.; Heim, A. Rapid random access detection of the novel SARS-coronavirus-2 (SARS-CoV-2, previously 2019-nCoV) using an open access protocol for the Panther Fusion. J. Clin. Virol. 2020, 125, 104305. [Google Scholar] [CrossRef]
- Garry, E.M.; Weckstein, A.R.; Quinto, K.; Bradley, M.C.; Lasky, T.; Chakravarty, A.; Leonard, S.; Vititoe, S.E.; Easthausen, I.J.; Rassen, J.A.; et al. Categorization of COVID-19 severity to determine mortality risk. Pharmacoepidemiol. Drug Saf. 2022, 31, 721–728. [Google Scholar] [CrossRef]
- Rottstegge, M.; Tipton, T.; Oestereich, L.; Ruibal, P.; Nelson, E.V.; Olal, C.; Port, J.R.; Seibel, J.; Pallasch, E.; Bockholt, S.; et al. Avatar Mice Underscore the Role of the T Cell-Dendritic Cell Crosstalk in Ebola Virus Disease and Reveal Mechanisms of Protection in Survivors. J. Virol. 2022, 96, e0057422. [Google Scholar] [CrossRef]
- Speranza, E.; Ruibal, P.; Port, J.R.; Feng, F.; Burkhardt, L.; Grundhoff, A.; Günther, S.; Oestereich, L.; A Hiscox, J.; Connor, J.H.; et al. T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in Humans. J. Infect. Dis. 2018, 218, S508–S518. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Baker, D.; van den Beek, M.; Blankenberg, D.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Eberhard, C.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016, 44, W3–W10. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Cohen, D.; Ouyang, Z.; Cao, Y.; Hu, X.; Liu, X.S. TRUST4: Immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 2021, 18, 627–630. [Google Scholar] [CrossRef]
- ImmunoMind Team. Immunarch: An R Package for Painless Bioinformatics Analysis of T-Cell and B-Cell Immune Repertoires. Zenodo 2019, 10, 5281. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 8 January 2024).
- Posit Team. RStudio: Integrated Development Environment for R. Available online: https://www.posit.co/ (accessed on 8 January 2024).
- Taeschler, P.; Adamo, S.; Deng, Y.; Cervia, C.; Zurbuchen, Y.; Chevrier, S.; Raeber, M.E.; Hasler, S.; Bächli, E.; Rudiger, A.; et al. T-cell recovery and evidence of persistent immune activation 12 months after severe COVID-19. Allergy Eur. J. Allergy Clin. Immunol. 2022, 77, 2468–2481. [Google Scholar] [CrossRef] [PubMed]
- Lang-Meli, J.; Luxenburger, H.; Wild, K.; Karl, V.; Oberhardt, V.; Salimi Alizei, E.; Graeser, A.; Reinscheid, M.; Roehlen, N.; Reeg, D.B.; et al. SARS-CoV-2-specific T-cell epitope repertoire in convalescent and mRNA-vaccinated individuals. Nat. Microbiol. 2022, 7, 675–679. [Google Scholar] [CrossRef]
- Kumar, N.P.; Moideen, K.; Nancy, A.; Selvaraj, N.; Renji, R.M.; Munisankar, S.; Thangaraj, J.W.V.; Muthusamy, S.K.; Kumar, C.P.G.; Bhatnagar, T.; et al. Enhanced SARS-CoV-2-Specific CD4+ T Cell Activation and Multifunctionality in Late Convalescent COVID-19 Individuals. Viruses 2022, 14, 511. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, D.; Tang, B.; Sun, X.; Shi, W.; Li, H.; Zhang, Z.; Wu, Y.; Zhang, Y.; Qiao, Q. The clinical and immunological characteristics of COVID-19 patients with delayed SARS-CoV-2 virus clearance. Immun. Inflamm. Dis. 2023, 11, e999. [Google Scholar] [CrossRef]
- Sasikala, M.; Shashidhar, J.; Deepika, G.; Ravikanth, V.; Krishna, V.V.; Sadhana, Y.; Pragathi, K.; Reddy, D.N. Immunological memory and neutralizing activity to a single dose of COVID-19 vaccine in previously infected individuals. Int. J. Infect. Dis. 2021, 108, 183–186. [Google Scholar] [CrossRef]
- Shomuradova, A.S.; Vagida, M.S.; Sheetikov, S.A.; Zornikova, K.V.; Kiryukhin, D.; Titov, A.; Peshkova, I.O.; Khmelevskaya, A.; Dianov, D.V.; Malasheva, M.; et al. SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity 2020, 53, 1245–1257.e5. [Google Scholar] [CrossRef]
- Rosner, K.; Winter, D.B.; Tarone, R.E.; Skovgaard, G.L.; Bohr, V.A.; Gearhart, P.J. Third complementarity-determining region of mutated Vh immunoglobulin genes contains shorter V, D, J, P, and N components than non-mutated genes. Immunology 2001, 103, 179–187. [Google Scholar] [CrossRef]
- Gonzalez, S.M.; Taborda, N.A.; Rugeles, M.T. Role of different subpopulations of CD8+ T cells during HIV exposure and infection. Vol. 8, Frontiers in Immunology. Front. Immunol. 2017, 8, 936. [Google Scholar] [CrossRef]
- Lindgren, T.; Ahlm, C.; Mohamed, N.; Evander, M.; Ljunggren, H.G.; Björkström, N.K. Longitudinal Analysis of the Human T Cell Response during Acute Hantavirus Infection. J. Virol. 2011, 85, 10252–10260. [Google Scholar] [CrossRef]
- Santinelli, L.; Lazzaro, A.; Sciarra, F.; Maddaloni, L.; Frasca, F.; Fracella, M.; Moretti, S.; Borsetti, A.; Bugani, G.; Alessandri, F.; et al. Cellular Immune Profiling of Lung and Blood Compartments in Patients with SARS-CoV-2 Infection. Pathogens 2023, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Santopaolo, M.; Gregorova, M.; Hamilton, F.; Arnold, D.; Long, A.; Lacey, A.; Oliver, E.; Halliday, A.; Baum, H.; Hamilton, K.; et al. Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months. eLife 2023, 12, e85009. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wei, L.; Li, G.; Hua, M.; Sun, Y.; Wang, D.; Han, K.; Yan, Y.; Song, C.; Song, R.; et al. Persistent High Percentage of HLA-DR+CD38high CD8+ T Cells Associated With Immune Disorder and Disease Severity of COVID-19. Front. Immunol. 2021, 12, 735125. [Google Scholar] [CrossRef]
- Bobcakova, A.; Barnova, M.; Vysehradsky, R.; Petriskova, J.; Kocan, I.; Diamant, Z.; Jesenak, M. Activated CD8+CD38+ Cells Are Associated With Worse Clinical Outcome in Hospitalized COVID-19 Patients. Front. Immunol. 2022, 13, 861666. [Google Scholar] [CrossRef]
- Rupp, J.; Dreo, B.; Gütl, K.; Fessler, J.; Moser, A.; Haditsch, B.; Schilcher, G.; Matzkies, L.-M.; Steinmetz, I.; Greinix, H.; et al. T Cell Phenotyping in Individuals Hospitalized with COVID-19. J. Immunol. 2021, 206, 1478–1482. [Google Scholar] [CrossRef] [PubMed]
- Thevarajan, I.; Nguyen, T.H.O.; Koutsakos, M.; Druce, J.; Caly, L.; van de Sandt, C.E.; Jia, X.; Nicholson, S.; Catton, M.; Cowie, B.; et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 2020, 26, 453–455. [Google Scholar] [CrossRef]
- Bi, Q.; Wu, Y.; Mei, S.; Ye, C.; Zou, X.; Zhang, Z.; Liu, X.; Wei, L.; Truelove, S.A.; Zhang, T.; et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: A retrospective cohort study. Lancet Infect. Dis. 2020, 20, 911–919. [Google Scholar] [CrossRef]
- Miller, J.D.; van der Most, R.G.; Akondy, R.S.; Glidewell, J.T.; Albott, S.; Masopust, D.; Murali-Krishna, K.; Mahar, P.L.; Edupuganti, S.; Lalor, S.; et al. Human Effector and Memory CD8+ T Cell Responses to Smallpox and Yellow Fever Vaccines. Immunity 2008, 28, 710–722. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef]
- Zhang, B.; Upadhyay, R.; Hao, Y.; Samanovic, M.I.; Herati, R.S.; Blair, J.D.; Axelrad, J.; Mulligan, M.J.; Littman, D.R.; Satija, R. Multimodal single-cell datasets characterize antigen-specific CD8+ T cells across SARS-CoV-2 vaccination and infection. Nat. Immunol. 2023, 24, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Oberhardt, V.; Luxenburger, H.; Kemming, J.; Schulien, I.; Ciminski, K.; Giese, S.; Csernalabics, B.; Lang-Meli, J.; Janowska, I.; Staniek, J.; et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 2021, 597, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Mallajosyula, V.; Arunachalam, P.S.; van der Ploeg, K.; Manohar, M.; Röltgen, K.; Yang, F.; Wirz, O.; Hoh, R.; Haraguchi, E.; et al. Spheromers reveal robust T cell responses to the Pfizer/BioNTech vaccine and attenuated peripheral CD8+ T cell responses post SARS-CoV-2 infection. Immunity 2023, 56, 864–878.e4. [Google Scholar] [CrossRef]
- Kudryavtsev, I.V.; Arsentieva, N.A.; Korobova, Z.R.; Isakov, D.V.; Rubinstein, A.A.; Batsunov, O.K.; Khamitova, I.V.; Kuznetsova, R.N.; Savin, T.V.; Akisheva, T.V.; et al. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients. Viruses 2022, 14, 1906. [Google Scholar] [CrossRef] [PubMed]
- Rajamanickam, A.; Pavan Kumar, N.; Pandiaraj, A.N.; Selvaraj, N.; Munisankar, S.; Renji, R.M.; Venkataramani, V.; Murhekar, M.; Thangaraj, J.W.V.; Muthusamy, S.K.; et al. Characterization of memory T cell subsets and common γ−chain cytokines in convalescent COVID-19 individuals. J. Leukoc. Biol. 2022, 112, 201–212. [Google Scholar] [CrossRef]
- Guo, L.; Liu, X.; Su, X. The role of TEMRA cell-mediated immune senescence in the development and treatment of HIV disease. Front. Immunol. 2023, 14, 1284293. [Google Scholar] [CrossRef]
- Brasu, N.; Elia, I.; Russo, V.; Montacchiesi, G.; Stabile, S.A.; De Intinis, C.; Fesi, F.; Gizzi, K.; Macagno, M.; Montone, M.; et al. Memory CD8+ T cell diversity and B cell responses correlate with protection against SARS-CoV-2 following mRNA vaccination. Nat. Immunol. 2022, 23, 1445–1456. [Google Scholar] [CrossRef]
- Schultheiß, C.; Paschold, L.; Simnica, D.; Mohme, M.; Willscher, E.; von Wenserski, L.; Scholz, R.; Wieters, I.; Dahlke, C.; Tolosa, E.; et al. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease. Immunity 2020, 53, 442–455.e4. [Google Scholar] [CrossRef]
- Hou, X.; Wang, G.; Fan, W.; Chen, X.; Mo, C.; Wang, Y.; Gong, W.; Wen, X.; Chen, H.; He, D.; et al. T-cell receptor repertoires as potential diagnostic markers for patients with COVID-19. Int. J. Infect. Dis. 2021, 113, 308–317. [Google Scholar] [CrossRef]
- Afik, S.; Yates, K.B.; Bi, K.; Darko, S.; Godec, J.; Gerdemann, U.; Swadling, L.; Douek, D.C.; Klenerman, P.; Barnes, E.J.; et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res. 2017, 45, e148. [Google Scholar] [CrossRef]
- Pickman, Y.; Dunn-Walters, D.; Mehr, R. BCR CDR3 length distributions differ between blood and spleen and between old and young patients, and TCR distributions can be used to detect myelodysplastic syndrome. Phys. Biol. 2013, 10, 056001. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, E.; Latini, A.; Borgiani, P.; Novelli, G. Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): Rapid systematic review and field synopsis. Hum. Genom. 2020, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Dopfer-Jablonka, A.; Steffens, S.; Müller, F.; Mikuteit, M.; Niewolik, J.; Cossmann, A.; Stankov, M.V.; Behrens, G.M.N.; Hummers, E.; Heesen, G.; et al. SARS-CoV-2-specific immune responses in elderly and immunosuppressed participants and patients with hematologic disease or checkpoint inhibition in solid tumors: Study protocol of the prospective, observational CoCo immune study. BMC Infect. Dis. 2022, 22, 403. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetti, J.E.; Escudero-Pérez, B.; Lasala, F.; Rivas, G.; Mancheño-Losa, M.; Rial-Crestelo, D.; Lora-Tamayo, J.; Cadar, D.; Carroll, M.; Delgado, R.; et al. Longitudinal Immunoprofiling of the CD8+ T-Cell Response in SARS-CoV-2 mRNA Vaccinees and COVID-19 Patients. Vaccines 2025, 13, 551. https://doi.org/10.3390/vaccines13060551
Brunetti JE, Escudero-Pérez B, Lasala F, Rivas G, Mancheño-Losa M, Rial-Crestelo D, Lora-Tamayo J, Cadar D, Carroll M, Delgado R, et al. Longitudinal Immunoprofiling of the CD8+ T-Cell Response in SARS-CoV-2 mRNA Vaccinees and COVID-19 Patients. Vaccines. 2025; 13(6):551. https://doi.org/10.3390/vaccines13060551
Chicago/Turabian StyleBrunetti, Jesús Emanuel, Beatriz Escudero-Pérez, Fátima Lasala, Gonzalo Rivas, Mikel Mancheño-Losa, David Rial-Crestelo, Jaime Lora-Tamayo, Dániel Cadar, Miles Carroll, Rafael Delgado, and et al. 2025. "Longitudinal Immunoprofiling of the CD8+ T-Cell Response in SARS-CoV-2 mRNA Vaccinees and COVID-19 Patients" Vaccines 13, no. 6: 551. https://doi.org/10.3390/vaccines13060551
APA StyleBrunetti, J. E., Escudero-Pérez, B., Lasala, F., Rivas, G., Mancheño-Losa, M., Rial-Crestelo, D., Lora-Tamayo, J., Cadar, D., Carroll, M., Delgado, R., Muñoz-Fontela, C., & Rodríguez, E. (2025). Longitudinal Immunoprofiling of the CD8+ T-Cell Response in SARS-CoV-2 mRNA Vaccinees and COVID-19 Patients. Vaccines, 13(6), 551. https://doi.org/10.3390/vaccines13060551