Helicobacter pylori Vaccine: Mechanism of Pathogenesis, Immune Evasion and Analysis of Vaccine Types
Abstract
:1. Introduction
2. The Structure and Pathogenicity of H. pylori
3. The Immune Evasion Mechanism of H. pylori
4. Vaccines Related to H. pylori
4.1. Vaccine Technologies of H. pylori
4.2. Production Principles of H. pylori Vaccine
4.2.1. Mucosal Vaccine Design and Molecular Adjuvant Technology
4.2.2. Immunogenicity, Safety and Stability
4.2.3. Cost and Production Feasibility Control
4.3. The Production Plan of H. pylori Vaccine
5. Summary and Outlook
6. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Møller, H.; Heseltine, E.; Vainio, H. Working group report on schistosomes, liver flukes and Helicobacter pylori. Int. J. Cancer 1995, 60, 587–589. [Google Scholar] [CrossRef]
- Pan, Y.; Jiao, F.Y. Helicobacter pylori infection and gastric microbiota: Insights into gastric and duodenal ulcer development. World J. Gastroenterol. 2025, 31, 100044. [Google Scholar] [CrossRef]
- Karhunen, P.; Tuomisto, S.; Goebeler, S.; Martiskainen, M.; Kok, E. Common occurrence of atrophic gastritis in an ageing non-hospitalised population: An autopsy study. Age Ageing 2025, 54, afaf047. [Google Scholar] [CrossRef]
- Paiva Prudente, T.; Mezaiko, E.; Nunes Pereira Oliva, H.; Yamamoto-Silva, F.P.; Santos de Freitas Silva, B.; Oliveira Oliva, I.; Risch, H. Associations between colonization with Helicobacter pylori and risk of gastrointestinal tract cancers: An umbrella review of meta-analyses. Eur. J. Clin. Investig. 2025, e14394. [Google Scholar] [CrossRef]
- Lin, G.; Tian, F.; Yu, Q.; Weng, X.; Yu, N.; Zhang, F.; Yi, C.; Ye, J.; Ye, D. IL-17RA/CTSK axis mediates H. pylori-induced castration-resistant prostate cancer growth. Oncogene 2024, 43, 3598–3616. [Google Scholar] [CrossRef]
- Wang, F.; Yao, Z.; Jin, T.; Mao, B.; Shao, S.; Shao, C. Research progress on Helicobacter pylori infection related neurological diseases. Ageing Res. Rev. 2024, 99, 102399. [Google Scholar] [CrossRef]
- Liu, Z.C.; Li, W.Q. Large-scale cluster randomised trial reveals effectiveness of Helicobacter pylori eradication for gastric cancer prevention. Clin. Transl. Med. 2025, 15, e70229. [Google Scholar] [CrossRef]
- Abdun, M.A.; Xu, L.; Li, X.T.; Mekky, A.; Al Hussan, M.; Abuheit, E.M.I.; Zhang, C.; Rahman, I.U.; Yu, M.; Sarwar, H.M.S.; et al. Global Prevalence of Helicobacter pylori Infection-Associated Gastric Preneoplastic Lesions in Pediatric Patients: A Systematic Review and Meta-Analysis. Helicobacter 2025, 30, e70021. [Google Scholar] [CrossRef]
- Huang, A.F.; He, C.; Sheng, J.W.; Jiang, X.T.; Li, N.S.; Fan, H.Z.; Zhu, Y. The epidemiological study of family-based Helicobacter pylori screening and its benefits: A cross-sectional study. Sci. Rep. 2025, 15, 5553. [Google Scholar] [CrossRef]
- Xie, D.; Xu, W.; Zhang, Z.; Huang, F.; Dai, X. Epidemiological surveys, antibiotic resistance, and related risk factors of Helicobacter pylori in Quanzhou, China: A cross-sectional study. Sci. Rep. 2025, 15, 4410. [Google Scholar] [CrossRef]
- Zhou, J.K.; Zheng, Y.; Wang, Y.P.; Ji, R. Prevalence and associated risk factors of Helicobacter pylori infection in community households in Lanzhou city. World J. Gastroenterol. 2024, 30, 5018–5031. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Fei, R.; Han, W.; Wang, X.; Chen, D.; She, S. Tracking the Helicobacter pylori Epidemic in Adults and Children in China. Helicobacter 2024, 29, e13139. [Google Scholar] [CrossRef]
- Sun, M.; Liu, E.; Yang, L.; Cao, H.; Han, M. A scoping review of worldwide guidelines for diagnosis and treatment of Helicobacter pylori infection. Syst. Rev. 2025, 14, 107. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, X.; Cai, P.; Wang, T.; Zhu, M.; Yan, C.; Pan, Q.; Chen, C.; Wu, Y.; Zhang, G.; et al. Global Population Structure, Virulence Factors and Antibiotic Resistance of Helicobacter pylori: A Pooled Analysis of 4067 Isolates From 76 Countries. Helicobacter 2025, 30, e70025. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Z.; Wang, X.; Jia, B.; Sun, M.; Wang, J.; Wan, Q.; Han, M.; Qiu, Y. Guideline-based bismuth quadruple therapy for Helicobacter pylori infection in China: A systematic review and network meta-analysis. PLoS ONE 2025, 20, e0318937. [Google Scholar] [CrossRef]
- Schiller, J.T.; Lowy, D.R. Prospects for preventing cancer with anti-microbial prophylactic vaccines. Cell Host Microbe 2023, 31, 137–140. [Google Scholar] [CrossRef]
- Rupnow, M.F.; Shachter, R.D.; Owens, D.K.; Parsonnet, J. Quantifying the population impact of a prophylactic Helicobacter pylori vaccine. Vaccine 2001, 20, 879–885. [Google Scholar] [CrossRef]
- Marshall, B.J.; Warren, J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984, 1, 1311–1315. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Wu, U.I.; Wang, J.T.; Sheng, W.H.; Chen, Y.C.; Chang, S.C. Managing Helicobacter pylori as an Infectious Disease: Implementation of Antimicrobial Stewardship. Helicobacter 2025, 30, e70013. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Brisse, M.; Vrba, S.M.; Kirk, N.; Liang, Y.; Ly, H. Emerging Concepts and Technologies in Vaccine Development. Front. Immunol. 2020, 11, 583077. [Google Scholar] [CrossRef]
- Al-Halifa, S.; Gauthier, L.; Arpin, D.; Bourgault, S.; Archambault, D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front. Immunol. 2019, 10, 22. [Google Scholar] [CrossRef]
- Wang, S.N.; Wang, Y.K.; Li, P.; Kong, L.C.; Deng, W.Y.; Jiang, B.; Li, Y.Y. Immune Cell Crisis and Excess Histopathological Features During the Development and Progression of H. pylori Infection in the Gastric Mucosa. Int. J. Gen. Med. 2025, 18, 1345–1357. [Google Scholar] [CrossRef]
- Yi, M.; Chen, S.; Yi, X.; Zhang, F.; Zhou, X.; Zeng, M.; Song, H. Helicobacter pylori infection process: From the molecular world to clinical treatment. Front. Microbiol. 2025, 16, 1541140. [Google Scholar] [CrossRef]
- He, B.; Hu, Y.; Wu, Y.; Wang, C.; Gao, L.; Gong, C.; Li, Z.; Gao, N.; Yang, H.; Xiao, Y.; et al. Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a "hit-and-run" paradigm. Cancer Commun 2025. ahead of print. [Google Scholar] [CrossRef]
- Nascakova, Z.; He, J.; Papa, G.; Francas, B.; Azizi, F.; Müller, A. Helicobacter pylori induces the expression of Lgr5 and stem cell properties in gastric target cells. Life Sci. Alliance 2024, 7, e202402783. [Google Scholar] [CrossRef]
- El Khadir, M.; Zahir, S.O.; Boukhris, S.A.; Benajah, D.A.; Ibrahimi, S.A.; Chbani, L.; El Abkari, M.; Bennani, B. Genotypic diversity of the Helicobacter pylori vacA c region and its correlation with gastric disease outcomes. J. Med. Microbiol. 2025, 74, 001969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, S.; Li, S.; Zheng, Y.; Mai, L.; Zhang, X. Association of Helicobacter pylori related chronic atrophic gastritis and gastric cancer risk: A literature review. Front. Med. 2025, 12, 1504749. [Google Scholar]
- Sibony-Benyamini, H.; Jbara, R.; Shubash Napso, T.; Abu-Rahmoun, L.; Vizenblit, D.; Easton-Mor, M.; Perez, S.; Brandis, A.; Leshem, T.; Peretz, A.; et al. The landcape of Helicobacter pylori-mediated DNA breaks links bacterial genotoxicity to its oncogenic potential. Genome Med. 2025, 17, 14. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, B.; Zhang, H.; Zhang, Z.; Meng, F.; Zhao, X.; Zhang, J.; Xiao, D. Study of the relationships among known virulence genes, coccoid transformation and cytotoxicity of Helicobacter pylori in different clinical diseases. Virulence 2024, 15, 2418407. [Google Scholar] [CrossRef] [PubMed]
- Rosinke, K.; Tachiyama, S.; Mrásek, J.; Liu, J.; Hoover, T.R. A Helicobacter pylori flagellar motor accessory is needed to maintain the barrier function of the outer membrane during flagellar rotation. PLoS Pathog. 2025, 21, e1012860. [Google Scholar] [CrossRef] [PubMed]
- Jebali, A.; Esmaeilzadeh, A.; Esmaeilzadeh, M.K.; Shabani, S. Immunoinformatics design and synthesis of a multi-epitope vaccine against Helicobacter pylori based on lipid nanoparticles. Sci. Rep. 2024, 14, 17910. [Google Scholar] [CrossRef]
- Eletto, D.; Mentucci, F.; Voli, A.; Petrella, A.; Porta, A.; Tosco, A. Helicobacter pylori Pathogen-Associated Molecular Patterns: Friends or Foes? Int. J. Mol. Sci. 2022, 23, 3531. [Google Scholar] [CrossRef] [PubMed]
- Fauzia, K.A.; Rathnayake, J.; Doohan, D.; Lamawansa, M.D.; Alfaray, R.I.; Batsaikhan, S.; Phuc, B.H.; Waskito, L.A.; Tuan, V.P.; Kabamba, E.T.; et al. Beyond Low Prevalence: Exploring Antibiotic Resistance and Virulence Profiles in Sri Lankan Helicobacter pylori with Comparative Genomics. Microorganisms 2025, 13, 420. [Google Scholar] [CrossRef] [PubMed]
- D’agostino, F.; Pinatel, E.; Meynhardt, A.; Scarlato, V.; Vannini, A.; Roncarati, D. RNase Y mediates posttranscriptional control of the virulence-associated CncR1 small-RNA in Helicobacter pylori. iScience 2025, 28, 111815. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Xu, Y.; Dou, Y.; Xu, D. Helicobacter pylori and gastric cancer: Mechanisms and new perspectives. J. Hematol. Oncol. 2025, 18, 10. [Google Scholar] [CrossRef]
- Shuman, J.H.B.; Lin, A.S.; Westland, M.D.; Bryant, K.N.; Fortier, G.E.; Piazuelo, M.B.; Reyzer, M.L.; Judd, A.M.; Tsui, T.; McDonald, W.H.; et al. Helicobacter pylori CagA and Cag type IV secretion system activity have key roles in triggering gastric transcriptional and proteomic alterations. Infect. Immun. 2025, 93, e0059524. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, N.; Ji, X.; Yang, S.; Zhao, Z.; Li, P. Helicobacter pylori CagA promotes gastric cancer immune escape by upregulating SQLE. Cell Death Dis. 2025, 16, 17. [Google Scholar] [CrossRef]
- Rai, R.P.; Syed, A.; Elgorban, A.M.; Abid, I.; Wong, L.S.; Khan, M.S.; Khatoon, J.; Prasad, K.N.; Ghoshal, U.C. Expressions of selected microRNAs in gastric cancer patients and their association with Helicobacter pylori and its cag pathogenicity island. Microb. Pathog. 2025, 202, 107442. [Google Scholar] [CrossRef]
- Pachathundikandi, S.K.; Tegtmeyer, N.; Backert, S. Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori. Trends Microbiol. 2023, 31, 903–915. [Google Scholar] [CrossRef]
- Varga, M.G.; Piazuelo, M.B.; Romero-Gallo, J.; Delgado, A.G.; Suarez, G.; Whitaker, M.E.; Krishna, U.S.; Patel, R.V.; Skaar, E.P.; Wilson, K.T.; et al. TLR9 activation suppresses inflammation in response to Helicobacter pylori infection. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G852–G858. [Google Scholar] [CrossRef]
- Varga, M.G.; Shaffer, C.L.; Sierra, J.C.; Suarez, G.; Piazuelo, M.B.; Whitaker, M.E.; Romero-Gallo, J.; Krishna, U.S.; Delgado, A.; Gomez, M.A.; et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 2016, 35, 6262–6269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, Y.; Zhang, X.; Fu, B.; Song, Z.; Wang, L.; Fu, R.; Lu, X.; Xing, J.; Lv, J.; et al. Sustained exposure to Helicobacter pylori induces immune tolerance by desensitizing TLR6. Gastric Cancer 2024, 27, 324–342. [Google Scholar] [CrossRef]
- Sirit, I.S.; Peek, R.M., Jr. Decoding the Ability of Helicobacter pylori to Evade Immune Recognition and Cause Disease. Cell Mol. Gastroenterol. Hepatol. 2025, 19, 101470. [Google Scholar] [CrossRef] [PubMed]
- Dooyema, S.D.R.; Noto, J.M.; Wroblewski, L.E.; Piazuelo, M.B.; Krishna, U.; Suarez, G.; Romero-Gallo, J.; Delgado, A.G.; Peek, R.M. Helicobacter pylori actively suppresses innate immune nucleic acid receptors. Gut Microbes 2022, 14, 2105102. [Google Scholar] [CrossRef]
- Sit, W.Y.; Cheng, M.L.; Chen, T.J.; Chen, C.J.; Chen, B.N.; Huang, D.J.; Chen, P.L.; Chen, Y.C.; Lo, C.J.; Wu, D.C.; et al. Helicobacter pylori PldA modulates TNFR1-mediated p38 signaling pathways to regulate macrophage responses for its survival. Gut Microbes 2024, 16, 2409924. [Google Scholar] [CrossRef] [PubMed]
- Anthofer, M.; Windisch, M.; Haller, R.; Ehmann, S.; Wrighton, S.; Miller, M.; Schernthanner, L.; Kufferath, I.; Schauer, S.; Jelušić, B.; et al. Immune evasion by proteolytic shedding of natural killer group 2, member D ligands in Helicobacter pylori infection. Front. Immunol. 2024, 15, 1282680. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Sztein, M.B.; Wasserman, S.S.; Losonsky, G.A.; DiLorenzo, S.C.; Walker, R.I. Safety and immunogenicity of oral inactivated whole-cell Helicobacter pylori vaccine with adjuvant among volunteers with or without subclinical infection. Infect. Immun. 2001, 69, 3581–3590. [Google Scholar] [CrossRef]
- Holmgren, J.; Nordqvist, S.; Blomquist, M.; Jeverstam, F.; Lebens, M.; Raghavan, S. Preclinical immunogenicity and protective efficacy of an oral Helicobacter pylori inactivated whole cell vaccine and multiple mutant cholera toxin: A novel and non-toxic mucosal adjuvant. Vaccine 2018, 36, 6223–6230. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, M.; Ji, X.; Su, G.; Zhang, Y.X.; Du, L. Candidate Antigens and the Development of Helicobacter pylori Vaccines. Helicobacter 2024, 29, e13128. [Google Scholar] [CrossRef]
- Tu, Z.; Wang, Y.; Liang, J.; Liu, J. Helicobacter pylori-targeted AI-driven vaccines: A paradigm shift in gastric cancer prevention. Front. Immunol. 2024, 15, 1500921. [Google Scholar] [CrossRef]
- Sarabi, P.A.; Rismani, E.; Shabanpouremam, M.; Talehahmad, S.; Vosough, M. Developing a multi-epitope vaccine against Helicobacter pylori. Hum. Immunol. 2025, 86, 111212. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhong, Y.; Chen, J.; Liu, Y.; Tang, C.; Wang, X.; Zhang, Y.; Wang, P.; Logan, S.M.; Chen, W.; et al. Oral immunization of mice with a multivalent therapeutic subunit vaccine protects against Helicobacter pylori infection. Vaccine 2020, 38, 3031–3041. [Google Scholar] [CrossRef]
- Cui, M.; Ji, X.; Guan, F.; Su, G.; Du, L. Design of a Helicobacter pylori multi-epitope vaccine based on immunoinformatics. Front. Immunol. 2024, 15, 1432968. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.; Ali, A.; Akbar, H.; Sayaf, A.M.; Khan, A.; Wei, D.Q. Immunoinformatics approaches to explore Helicobacter pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci. Rep. 2019, 9, 13321. [Google Scholar] [CrossRef]
- Ru, Z.; Yu, M.; Zhu, Y.; Chen, Z.; Zhang, F.; Zhang, Z.; Ding, J. Immmunoinformatics-based design of a multi-epitope vaccine with CTLA-4 extracellular domain to combat Helicobacter pylori. FASEB J. 2022, 36, e22252. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhao, W.; Zou, Z.; Kong, L.; Yang, L. Oral multivalent epitope vaccine, based on UreB, HpaA, CAT, and LTB, for prevention and treatment of Helicobacter pylori infection in C57BL/6 mice. Helicobacter 2021, 26, e12807. [Google Scholar] [CrossRef] [PubMed]
- Aleraky, D.M.; Abuohashish, H.M.; Bugshan, A.S.; Abdelsalam, M.M.; AlHawaj, H.A.; AlKhamis, T.T.; AlDossary, F.A.; Alrayes, N.M.; Ragab, Y.M.; AbdelKhalek, Z.; et al. Potential Antigenic Candidates for the Development of Peptide-Based Vaccines to Induce Immunization against Helicobacter pylori Infection in BALB/c Mice. Int. J. Mol. Sci. 2022, 23, 12824. [Google Scholar] [CrossRef]
- Altman, E.; Chandan, V.; Harrison, B.A.; Schur, M.; Goneau, M.F.; Li, J.; Gilbert, M. Chemoenzymatic synthesis of an α-1,6-glucan-based conjugate vaccine against Helicobacter pylori. Glycobiology 2022, 32, 691–700. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.; Zhang, Z.; Wu, J.; Qu, Y.; Ni, L.; Zhang, G.; Liu, K.; Guo, L. M cells targeted H. pylori antigen SAM-FAdE displayed on bacterium-like particles induce protective immunity. J. Nanobiotechnol. 2025, 23, 23. [Google Scholar] [CrossRef]
- Ni, X.; Liu, Y.; Sun, M.; Jiang, Y.; Wang, Y.; Ke, D.; Guo, G.; Liu, K. Oral Live-Carrier Vaccine of Recombinant Lactococcus lactis Inducing Prophylactic Protective Immunity Against Helicobacter pylori Infection. Probiotics Antimicrob Proteins 2024, in press. [Google Scholar] [CrossRef]
- Zhang, F.; Ni, L.; Zhang, Z.; Luo, X.; Wang, X.; Zhou, W.; Chen, J.; Liu, J.; Qu, Y.; Liu, K.; et al. Recombinant L. Lactis vaccine LL-plSAM-WAE targeting four virulence factors provides mucosal immunity against H. pylori Infection. Microb. Cell Fact. 2024, 23, 61. [Google Scholar]
- Zhang, F.; Shi, T.; Zhang, Z.; Wang, S.; Liu, J.; Li, Y.; Wang, X.; Liu, K.; Guo, L. An M cell-targeting recombinant L. Lactis vaccine against four H. pylori adhesins. Appl. Microbiol. Biotechnol. 2024, 108, 231. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, F.; Wang, S.; Li, R.; Zhang, L.; Zhang, Z.; Yin, R.; Liu, H.; Liu, K. Oral Immunization with a M Cell-Targeting Recombinant L. Lactis Vaccine LL-plSAM-FVpE Stimulate Protective Immunity Against H. pylori in Mice. Front. Immunol. 2022, 13, 918160. [Google Scholar] [CrossRef]
- Liu, Q.; Shang, Y.; Shen, L.; Yu, X.; Cao, Y.; Zeng, L.; Zhang, H.; Rao, Z.; Li, Y.; Tao, Z.; et al. Outer membrane vesicles from genetically engineered Salmonella enterica serovar Typhimurium presenting Helicobacter pylori antigens UreB and CagA induce protection against Helicobacter pylori infection in mice. Virulence 2024, 15, 2367783. [Google Scholar] [CrossRef]
- Ghasemi, A.; Wang, S.; Sahay, B.; Abbott, J.R.; Curtiss, R., 3rd. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front. Immunol. 2022, 13, 1034683. [Google Scholar] [CrossRef]
- Nie, L.; Huang, Y.; Cheng, Z.; Luo, H.; Zhan, Y.; Dou, K.; Ma, C.; Yu, C.; Luo, C.; Liu, Z.; et al. An intranasal influenza virus vector vaccine protects against Helicobacter pylori in mice. J. Virol. 2024, 98, e0192323. [Google Scholar] [CrossRef]
- Katsande, P.M.; Nguyen, V.D.; Nguyen, T.L.P.; Nguyen, T.K.C.; Mills, G.; Bailey, D.M.D.; Christie, G.; Hong, H.A.; Cutting, S.M. Prophylactic immunization to Helicobacter pylori infection using spore vectored vaccines. Helicobacter 2023, 28, e12997. [Google Scholar] [CrossRef]
- Cen, Q.; Gao, T.; Ren, Y.; Lu, X.; Lei, H. Immune evaluation of a Saccharomyces cerevisiae-based oral vaccine against Helicobacter pylori in mice. Helicobacter 2021, 26, e12772. [Google Scholar] [CrossRef]
- Zhang, X.; Sang, S.; Guan, Q.; Tao, H.; Wang, Y.; Liu, C. Oral Administration of a Shigella 2aT32-Based Vaccine Expressing UreB-HspA Fusion Antigen with and Without Parenteral rUreB-HspA Boost Confers Protection Against Helicobacter pylori in Mice Model. Front. Immunol. 2022, 13, 894206. [Google Scholar] [CrossRef]
- Azami, Z.; Farahmand, M.; Kavousi, M. A new multi-epitope DNA vaccine against Helicobacter pylori infection in a BALB/c mouse model. Heliyon 2024, 10, e39433. [Google Scholar] [CrossRef]
- Kaveh-Samani, A.; Dalali, S.; Kaviani, F.; Piri-Gharaghie, T.; Doosti, A. Oral administration of DNA alginate nanovaccine induced immune-protection against Helicobacter pylori in Balb/C mice. BMC Immunol. 2024, 25, 11. [Google Scholar] [CrossRef]
- Francis, J.E.; Skakic, I.; Majumdar, D.; Taki, A.C.; Shukla, R.; Walduck, A.; Smooker, P.M. Solid Lipid Nanoparticles Delivering a DNA Vaccine Encoding Helicobacter pylori Urease A Subunit: Immune Analyses before and after a Mouse Model of Infection. Int. J. Mol. Sci. 2024, 25, 1076. [Google Scholar] [CrossRef]
- Afkhamipour, M.; Kaviani, F.; Dalali, S.; Piri-Gharaghie, T.; Doosti, A. Potential Gastric Cancer Immunotherapy: Stimulating the Immune System with Helicobacter pylori pIRES2-DsRed-Express-ureF DNA Vaccines. Arch. Immunol. Ther. Exp. 2024, 72. [Google Scholar] [CrossRef]
- Ansari, H.; Tahmasebi-Birgani, M.; Bijanzadeh, M. DNA vaccine containing Flagellin A gene induces significant immune responses against Helicobacter pylori infection: An in vivo study. Iran. J. Basic. Med. Sci. 2021, 24, 796–804. [Google Scholar]
- Chehelgerdi, M.; Doosti, A. Effect of the cagW-based gene vaccine on the immunologic properties of BALB/c mouse: An efficient candidate for Helicobacter pylori DNA vaccine. J. Nanobiotechnol. 2020, 18, 63. [Google Scholar] [CrossRef]
- Das, S.; Halder, P.; Banerjee, S.; Mukhopadhyay, A.K.; Dutta, S.; Koley, H. Establishment of an intragastric surgical model using C57BL/6 mice to study the vaccine efficacy of OMV-based immunogens against Helicobacter pylori. Biol. Open 2024, bio-060282. [Google Scholar] [CrossRef]
- Sedarat, Z.; Taylor-Robinson, A.W. Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines. Pathogens 2024, 13, 392. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhu, Y.; Liu, J.; Chen, Y.; Cao, X.; Yang, Y. Total Synthesis and Immunological Evaluation of the Tri-d-glycero-d-manno-heptose Antigen of the Lipopolysaccharide as a Vaccine Candidate against Helicobacter pylori. Org. Lett. 2020, 22, 8780–8785. [Google Scholar] [CrossRef]
- Czinn, S.J.; Blanchard, T. Vaccinating against Helicobacter pylori infection. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 133–140. [Google Scholar] [CrossRef]
- Hasanzadeh Haghighi, F.; Menbari, S.; Mohammadzadeh, R.; Pishdadian, A.; Farsiani, H. Developing a potent vaccine against Helicobacter pylori: Critical considerations and challenges. Expert. Rev. Mol. Med. 2024, 27, e12. [Google Scholar] [CrossRef]
- Yunle, K.; Tong, W.; Jiyang, L.; Guojun, W. Advances in Helicobacter pylori vaccine research: From candidate antigens to adjuvants-A review. Helicobacter 2024, 29, e13034. [Google Scholar] [CrossRef]
- Amaral, R.; Concha, T.; Vítor, J.; Almeida, A.J.; Calado, C.; Gonçalves, L.M. Chitosan Nanoparticles for Enhanced Immune Response and Delivery of Multi-Epitope Helicobacter pylori Vaccines in a BALB/c Mouse Model. Pharmaceutics 2025, 17, 132. [Google Scholar] [CrossRef]
- Chaleshtori, Z.A.; Rastegari, A.A.; Nayeri, H.; Doosti, A. Chitosan-LeoA-DNA Nanoparticles Promoted the Efficacy of Novel LeoA-DNA Vaccination on Mice Against Helicobacter pylori. Curr. Microbiol. 2024, 81, 125. [Google Scholar] [CrossRef]
- Vaillant, L.; Oster, P.; Mcmillan, B.; Orozco Fernandez, E.; Velin, D. GM-CSF is key in the efficacy of vaccine-induced reduction of Helicobacter pylori infection. Helicobacter 2022, 27, e12875. [Google Scholar] [CrossRef]
- Xue, R.Y.; Liu, C.; Wang, J.Q.; Deng, Y.; Feng, R.; Li, G.C.; Liu, J.Y.; Cheng, H.; Shan Zhang, S.; Duan, H.; et al. Synthetic Self-Adjuvanted Lipopeptide Vaccines Conferred Protection against Helicobacter pylori Infection. Adv. Healthc. Mater. 2023, 12, e2300085. [Google Scholar] [CrossRef]
- Sun, M.; Liu, Y.; Ni, X.; Tan, R.; Wang, Y.; Jiang, Y.; Ke, D.; Du, H.; Guo, G.; Liu, K. Intranasal immunization with poly I:C and CpG ODN adjuvants enhances the protective efficacy against Helicobacter pylori infection in mice. Microbes Infect. 2024, 27, 105433. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Li, Y.; Tao, Z.; Shen, L.; Shang, Y.; Huang, X.; Liu, Q. Adjuvants for Helicobacter pylori vaccines: Outer membrane vesicles provide an alternative strategy. Virulence 2024, 15, 2425773. [Google Scholar] [CrossRef]
- Okamura, T.; Ito, A.; Iwaya, Y.; Nagaya, T.; Hirayama, A.; Ota, H.; Akamatsu, T. Long-term evaluation of Helicobacter pylori screening in school health checkups: An 11-year study in Japan. J. Gastroenterol. 2025. ahead of print. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, S.; Liu, Y.; Li, H. Economic evaluation of preventing gastric cancer by eliminating Helicobacter pylori infection in China. Scand. J. Gastroenterol. 2025, 60, 327–335. [Google Scholar] [CrossRef]
- Global burden associated with 85 pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2024, 24, 868–895. [CrossRef]
- Arcos-Machancoses, J.V.; Romero Prada, M.; Crehuá Gaudiza, E.; Martínez Costa, C. Cost-effectiveness analysis of a vaccine for Helicobacter pylori in southern Europe. Rev. Esp. Salud Publica 2024, 98, e202403017. [Google Scholar]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Sindi, W.; Alzahrani, Y.; Alhifani, S.; Alshehri, T.; Anajirih, N.A.; ALMutairi, T.; Alsaedi, A.; et al. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front. Med. 2024, 11, 1523991. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Mao, X.H.; Li, J.X.; Tong, W.D.; Wang, B.; Zhang, Y.J.; Guo, G.; Zhao, Z.J.; Li, L.; Wu, D.L.; et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015, 386, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, W.; Xia, L.; Kong, L.; Yang, L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect. Drug Resist. 2023, 16, 3787–3805. [Google Scholar] [CrossRef] [PubMed]
- Teng, A.; Hildred, E.; Stanley, J.; Inns, S.; McLeod, M. Ethnic Inequity in the Current Approach to H. pylori Testing and Treatment: Linked Data Cohort Analysis. Helicobacter 2025, 30, e70005. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, S.; Hao, S.; Pan, J.; Li, Y.; Yuan, G.; Li, P.; Hu, H.; Yu, S. Fucoidan-modified antibiotic-free nanovesicles: A multidimensional approach to eradicate intracellular and extracellular Helicobacter pylori and restore gastrointestinal homeostasis. Int. J. Biol. Macromol. 2025, 307, 141786. [Google Scholar] [CrossRef]
- Liu, T.; Gu, Y.; Zhao, Y.; Li, Y. Nanomaterials in gastric cancer: Pioneering precision medicine for diagnosis, therapy, and prevention. Med. Oncol. 2025, 42, 93. [Google Scholar] [CrossRef]
- Skakic, I.; Taki, A.C.; Francis, J.E.; Dekiwadia, C.; Van, T.T.H.; Joe, C.C.D.; Phan, T.; Lovrecz, G.; Gorry, P.R.; Ramsland, P.A.; et al. Nanocapsules Comprised of Purified Protein: Construction and Applications in Vaccine Research. Vaccines 2024, 12, 410. [Google Scholar] [CrossRef]
Virulence Factor/Gene | Structural/Genetic Characteristics | Function/Pathogenic Mechanism | References |
---|---|---|---|
CagA | Located on the pathogenic island of cagPAI, it encodes an immune dominant protein of 120-145 kDa and enters host cells via T4SS |
| [24,25,26] |
VacA | Genetic variation (s/i/m/c region) affects toxicity; Secreted as 140 kDa prototoxin and cleaved into 95 kDa mature protein |
| [24,27,28,29,30] |
Urease | Urea is decomposed to produce ammonia, which neutralizes gastric acid |
| [23,24,27] |
Flagella-associated proteins (FlgA, FlgV, etc.) | Proteins related to the morphology and flagellar motility of Spirilla | Promote bacterial movement and immune escape. | [23,24,31,32] |
OMV and OMP | It carries components such as VacA and urease |
| [31] |
OipA | Outer membrane inflammatory protein | Activate the STAT1-IRF1 signaling pathway, induce IL-8 secretion and β-catenin nuclear translocation, and promote inflammation and cell proliferation | [20,31,32] |
SabA and BabA | Sialic acid-binding adhesive and blood group antigen-binding adhesive |
| [24,33,34] |
Synergistic pathogenic mechanism | Through the “DNA damage—repair regulation” loop |
| [29] |
The Immune Escape Mechanism and Function of CagA Protein | |||
---|---|---|---|
Virulence Factor/Mechanism | Mode of Action | Function/Pathogenic Mechanism | References |
CagA protein | It enters the host cells through the T4SS system and affects gene expression and signaling pathways. |
| [28,37,38,39] |
The difference in the action time of CagA | Short-term and long-term infection dynamics affect the immune response. |
| [28,37] |
Epigenetic regulation | Remodeling gene expression through DNA methylation and miRNA networks |
| [28,39] |
The immune escape mechanism of TLRs | |||
TLR subtype | Identify the target | H. pylori’s escape strategy | References |
TLR2 | LPS, lipoprotein, PGs |
| [24,33,40] |
TLR4 | LPS (needs to form a complex with MD2) | Modify the lipid A core of LPS to evade immune recognition. | [24,33,40] |
TLR5 | Bacterial flagellin | Down-regulate flagellar expression or alter flagellar structure. | [40] |
TLR6 | Bacterial components (activation of inflammation in the acute phase) | Reduce TLR6 sensitivity and induce immune tolerance in chronic infections. | [43] |
TLR7/8 | Bacterial RNA | Modify the RNA structure to evade immune recognition. | [24,33,40] |
TLR9 | glycocalyx | Utilize the anti-inflammatory mechanism of TLR9 to maintain chronic infections. | [24,41,42] |
Other immune escape mechanisms | |||
Mechanism | Mode of action | Function/Pathogenic mechanism | References |
Interfere with innate immune signals | Inhibit the STING/RIG-I pathway | Reduce interferon production and weaken antiviral immunity | [44,45] |
Weaken the function of immune cells | Inhibit the migration of neutrophils and induce the apoptosis of macrophages |
| [46] |
Protease system | Degrade the NKG2D ligand | Evading immune surveillance (such as the killing function of NK cells) | [47] |
Imbalance of T-cell immunity | Inhibit the proliferation of T cells and induce the imbalance of Treg/Th1/Th17 | Form an immunosuppressive microenvironment | [44] |
Immunotherapy strategy | |||
Strategy direction | Specific method | Objective | |
Direct intervention of pathogens |
| Reduce the infection load and inhibit pathogenicity. | |
Activate host immunity |
| Restore immune surveillance and eliminate infections. | |
Vaccine design | Integrate multi-target strategies (such as CagA, VacA, adhesins, etc.). | Prevent and treat H. pylori infection to reduce the risk of gastric cancer |
Vaccine Type | Advantages | Limitations | Experimental Verification and Effect | References |
---|---|---|---|---|
Whole-cell vaccines | Stimulate mucosal and systemic immune responses | The side effects are relatively large. |
| [48,49,50] |
Subunit vaccines | Strong targeting and high safety; it can induce the Th1/Th17 response and sIgA secretion. | Adjuvants are needed to enhance immunogenicity. |
| [32,50,51,52,53,54,55,56,57,58,59] |
Live vector vaccines |
| The technical difficulty is high, with potential biosafety risks, and it may enhance local inflammation. |
| [60,61,62,63,64,65,66,67,68,69,70] |
DNA vaccines | Induce comprehensive immunity (Th1/Th17/Th2). |
|
| [50,71,72,73,74,75,76,77,78,79,80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Wang, Q.; Chen, X.; Lu, J. Helicobacter pylori Vaccine: Mechanism of Pathogenesis, Immune Evasion and Analysis of Vaccine Types. Vaccines 2025, 13, 526. https://doi.org/10.3390/vaccines13050526
Gong J, Wang Q, Chen X, Lu J. Helicobacter pylori Vaccine: Mechanism of Pathogenesis, Immune Evasion and Analysis of Vaccine Types. Vaccines. 2025; 13(5):526. https://doi.org/10.3390/vaccines13050526
Chicago/Turabian StyleGong, Jingwen, Qing Wang, Xing Chen, and Junhui Lu. 2025. "Helicobacter pylori Vaccine: Mechanism of Pathogenesis, Immune Evasion and Analysis of Vaccine Types" Vaccines 13, no. 5: 526. https://doi.org/10.3390/vaccines13050526
APA StyleGong, J., Wang, Q., Chen, X., & Lu, J. (2025). Helicobacter pylori Vaccine: Mechanism of Pathogenesis, Immune Evasion and Analysis of Vaccine Types. Vaccines, 13(5), 526. https://doi.org/10.3390/vaccines13050526