Bovine Adenoviral Vector-Based Platform for Vaccine Development
Abstract
:1. Introduction
2. BAdV-Associated Diseases
3. Virion Structure
4. Genome Organization
5. Receptors and Cell Entry
6. Virus Replication
7. BAdV Vectors for Gene Delivery
7.1. Foreign Gene Cassette Insertion Sites and Methods for Generation of BAdV Vectors
7.2. Cell Lines for Generation of BAdV Vectors
7.3. Unique Features of the BAdV-3 Vector Platform
8. BAdV-3 Vector-Based Vaccines
Vector Name | Deleted Region | Foreign Gene Cassette | Pathogen | Experimental Animal Used | Dose, Route, and Regimen | Study Outcome | References |
---|---|---|---|---|---|---|---|
BAV3.E3gD | E3 | Full-length glycoprotein D (gD) | Bovine herpesvirus-1 (BoHV-1) | Cotton rats and calves | Cotton rats: 107 PFU, i.n., twice, 3 weeks apart Calves: 108 PFU, i.n., twice, 4 weeks apart | In cotton rats, BAV3.E3gDt induced greater gD-specific serum IgG titer (~4 log10) than BAV3.E3gD (2 log10). Mucosal IgA titers were similar (~2.5 log10); however, BAV3.E3gD elicited a greater number of gD-specific IgA antibody-secreting cells (ASCs) (30 ASC/million) in the lungs than BAV3.E3gDt (22 ASC/million). In calves, BAV3.E3gD and BAV3.E3gDt induced similar serum IgG titer (~10 log10) and mucosal IgA titer (~3 log10). Upon challenge with BoHV-1, calves immunized with either vaccine demonstrated lower clinical scores and less nasal viral shedding than the mock group. | [73,91] |
BAV3.E3gDt | E3 | Truncated glycoprotein D (gDt) | BoHV-1 | Cotton rats and calves | |||
BAV331 and BAV338 | E3 | Glycoprotein E2 (gE2) | Bovine viral diarrhea virus | Cotton rats | 107 PFU, i.n., twice, 3 weeks apart | BAV338 vectors elicited significantly higher E2-specific systemic IgG titer (>1:256) than the BAV331 vector (>1:64). Both vectors elicited IgA antibodies in the nasal secretions and lung washes (≥1:16). BAV338 also elicited significantly greater IgA ASC in lungs (~10 ASC/million) than the BAV331 vector (~5 ASC/million). | [93] |
BAV360 | E3 | Glycoprotein G (gG) | Bovine respiratory syncytial virus (BSRV) | Cotton rats | 107 PFU, i.n., twice, 3 weeks apart | BAV360 elicited a significant level of gG-specific IgG titer (2 log10) in serum, IgA titers (3 log2) in nasal secretions, and BRSV-specific VNT titers (6 log2). Further, BAV851 elicited serum IgG titer specific to gG (~3 log10) and gD (4 log10). Mucosal IgA titer was also elicited against gG (3 log2) and gD (5 log2). Additionally, BoHV-1-specific VNT titer (~7 log2) and BRSV-specific VNT titer (8 log2) were also induced. | [92] |
BAV851 | E3 | gDt and gG | BoHV-1 and BSRV | Cotton rats | |||
BAd-H5HA | E1 and E3 | Hemagglutinin (HA) | Influenza virus [A/Hong Kong/156/97(H5N1)] | BALB/c mice | 106 to 108 PFU, i.n. or intramuscular, once | BAd-H5HA vector elicited high levels of anti-HA IgG1, IgG2a, and IgG2b in serum and IgA antibodies in lung wash and nasal wash, along with interferon (IFN) γ-secreting HA518–526 peptide-specific CD8+ T cells in spleenocytes and lymph nodes. Mice were fully protected from heterologous H5N1 influenza challenge at the 106 PFU i.n. dose and 3 × 107 PFU intramuscular dose. | [10] |
BAdv85C5 | E1 and E3 | Ag85B-p25 epitope and autophagy-inducing peptide C5 (AIP-C5) | Mycobacterium tuberculosis | C57BL/6 mice | 107 PFU, i.n., | BCG vaccinated mice were i.n. boosted with BAdv85C5 and challenged with 100 colony-forming units (CFU) of virulent aerosolized Mycobacterium tuberculosis (Mtb). There was >1.4-log10 reduction in Mtb lung burden and ~0.8 log10 reduction in spleen Mtb load. Meanwhile, single i.n. vaccination with BAdv85C5 led to >0.5-log10 reduction in Mtb lung burden and ≥1 log10 reduction in spleen Mtb load. | [94] |
BAd-FullHA-C5 | E1 and E3 | HA and AIP-C5 | Influenza virus [A/Vietnam/1203/2004(H5N1)] | BALB/c mice | 107 to 3 × 107 PFU, i.n. | The vectors with SP-M2e-HA2-Tri and SP-HAstem-C5 performed best across two studies and were further evaluated using HAdV vector prime and BAdV vector boost approach with the vector expressing FullHA-C5 as a positive control. SP-HAstem-C5 was the best candidate and provided complete protection following homologous (H5N1) [no mortality and ~3 log10 TCID50/mL reduction in lung viral load] or heterosubtypic (group 1, H1N1) [no mortality and ~1 log10 TCID50/mL reduction in lung viral load] virus challenge. Meanwhile, 80% protection and ~2 log10 TCID50/mL reduction in lung viral load were observed against group 2 (H3N2) virus challenge. | [78] |
BAd-EP-HAstem-C5 | E1 and E3 | HA stem region, immunoglobulin excretory signal peptide (EP), and AIP-C5 | Influenza virus [A/Vietnam/1203/2004(H5N1)] | BALB/c mice | |||
BAd-EP-HAstem-4M2e-C5 | E1 and E3 | HA stem region, EP, extracellular domains of matrix protein 2 (M2e), and AIP-C5 | Influenza virus [A/Vietnam/1203/2004(H5N1) and A/Anhui/1YK_RG03/2013(H7N9)] | BALB/c mice | |||
BAd-SP-HAstem-C5 | E1 and E3 | HA stem region, HA signal peptide (SP), and AIP-C5 | Influenza virus [A/Vietnam/1203/2004(H5N1)] | BALB/c mice | |||
BAd-SP-HAstem-4M2e-C5 | E1 and E3 | HA stem region, SP, M2e, and AIP-C5 | Influenza virus [A/Vietnam/1203/2004(H5N1) and A/Anhui/1YK_RG03/2013(H7N9)] | BALB/c mice |
9. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Damania, B.A.; Howley, P.M.; Knipe, D.M.; Cohen, J.L. Adenoviridae: The Viruses and Their Replication. In Fields Virology: DNA Viruses; Wolters Kluwer Health: Philadelphia, PA, USA, 2021; pp. 98–128. [Google Scholar]
- Adenoviridae. In Fenner’s Veterinary Virology, 5th ed.; MacLachlan, N.J., Dubovi, E.J., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 217–227. [Google Scholar]
- Benkő, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. Family: Adenoviridae. Available online: https://ictv.global/report/chapter/adenoviridae/adenoviridae (accessed on 25 March 2025).
- Vidovszky, M.Z.; Böszörményi, K.P.; Surján, A.; Varga, T.; Dán, Á.; Benkő, M.; Harrach, B. First DNA sequence proof for the occurrence of bovine adenovirus types 10 and 11 in continental Europe. Transbound. Emerg. Dis. 2022, 69, e3479–e3486. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Li, J.; Zeng, W.; Li, Y.; Yu, C.; Zhao, S.; Chen, L.; Feng, Y. The seroprevalence of adenoviruses since 2000(1). Emerg. Microbes Infect. 2025, 14, 2475831. [Google Scholar] [CrossRef] [PubMed]
- Alhashimi, M.; Elkashif, A.; Sayedahmed, E.E.; Mittal, S.K. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021, 13, 1493. [Google Scholar] [CrossRef]
- Moffatt, S.; Hays, J.; HogenEsch, H.; Mittal, S.K. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: Implications in gene therapy. Virology 2000, 272, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tandon, M.; Ahi, Y.S.; Bangari, D.S.; Vemulapalli, R.; Mittal, S.K. Evaluation of cross-reactive cell-mediated immune responses among human, bovine and porcine adenoviruses. Gene Ther. 2010, 17, 634–642. [Google Scholar] [CrossRef]
- Li, X.; Bangari, D.S.; Sharma, A.; Mittal, S.K. Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry. Virology 2009, 392, 162–168. [Google Scholar] [CrossRef]
- Sayedahmed, E.E.; Hassan, A.O.; Kumari, R.; Cao, W.; Gangappa, S.; York, I.; Sambhara, S.; Mittal, S.K. A Bovine Adenoviral Vector-Based H5N1 Influenza -Vaccine Provides Enhanced Immunogenicity and Protection at a Significantly Low Dose. Mol. Ther. Methods Clin. Dev. 2018, 10, 210–222. [Google Scholar] [CrossRef]
- Sharma, A.; Bangari, D.S.; Tandon, M.; Pandey, A.; HogenEsch, H.; Mittal, S.K. Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology 2009, 386, 44–54. [Google Scholar] [CrossRef]
- Sharma, A.; Bangari, D.S.; Vemula, S.V.; Mittal, S.K. Persistence and the state of bovine and porcine adenoviral vector genomes in human and nonhuman cell lines. Virus Res. 2011, 161, 181–187. [Google Scholar] [CrossRef]
- Fent, G.M.; Fulton, R.W.; Saliki, J.T.; Caseltine, S.L.; Lehmkuhl, H.D.; Confer, A.W.; Purdy, C.W.; Briggs, R.E.; Loan, R.W.; Duff, G.C. Bovine adenovirus serotype 7 infections in postweaning calves. Am. J. Vet. Res. 2002, 63, 976–978. [Google Scholar] [CrossRef]
- Graham, D.A.; Calvert, V.; Benkö, M.; Curran, W.; Wylie, M.; Snodden, D.A.; Moffet, D.A.; Papp, T.; Adair, B.M.; Smyth, J.A. Isolation of bovine adenovirus serotype 6 from a calf in the United Kingdom. Vet. Rec. 2005, 156, 82–86. [Google Scholar] [CrossRef]
- Lehmkuhl, H.D.; Briggs, R.E.; Cutlip, R.C. Survey for antibodies to bovine adenoviruses in six- to nine-month-old feedyard cattle. Am. J. Vet. Res. 1998, 59, 1579–1580. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.G.; Thomson, G.W.; Henry, J.N. Alimentary tract manifestations of bovine adenovirus infections. Can. Vet. J. 1981, 22, 68–71. [Google Scholar]
- Darbyshire, J.H.; Dawson, P.S.; Lamont, P.H.; Ostler, D.C.; Pereira, H.G. A new adenovirus serotype of bovine origin. J. Comp. Pathol. 1965, 75, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Earley, E.; Zellat, J. Isolation from cattle of a virus related to human adenovirus. Proc. Soc. Exp. Biol. Med. 1959, 102, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Zellat, J.; Michaelson, T.C. A new bovine adenovirus related to human adenovirus. Proc. Soc. Exp. Biol. Med. 1960, 105, 340–342. [Google Scholar] [CrossRef]
- Bürki, F. Bovine Adenoviruses. In Virus Infections of Ruminants; Elsevier: Amsterdam, The Netherlands, 1990; pp. 161–169. [Google Scholar]
- Fulton, R.W. Viral Diseases of the Bovine Respiratory Tract. In Food Animal Practice, 5th ed.; Anderson, D.E., Rings, D.M., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2009; pp. 171–191. [Google Scholar]
- Aldasy, P.; Csontos, L.; Bartha, A. Pneumo-enteritis in calves caused by Adenoviruses. Acta Vet. Acad. Sci. Hung. 1965, 15, 167–175. [Google Scholar]
- Darbyshire, J.H.; Jennings, A.R.; Omar, A.R.; Dawson, P.S.; Lamont, P.H. Association of adenoviruses with bovine respiratory diseases. Nature 1965, 208, 307–308. [Google Scholar] [CrossRef]
- Coria, M.F.; McClurkin, A.W.; Cutlip, R.C.; Ritchie, A.E. Isolation and characterization of bovine adenovirus type 5 associated with “weak calf syndrome”. Arch. Virol. 1975, 47, 309–317. [Google Scholar] [CrossRef]
- Wilcox, G.E. Isolation of adenoviruses from cattle with conjunctivitis and kerato-conjunctivitis. Aust. Vet. J. 1969, 45, 265–270. [Google Scholar] [CrossRef]
- Bartha, A.; Máthé, S.; Aldásy, P. New serotype 8 of bovine adenoviruses. Acta Vet. Acad. Sci. Hung. 1970, 20, 399–400. [Google Scholar] [PubMed]
- Darbyshire, J.H.; Kinch, D.A.; Jennings, A.R. Experimental infection of calves with bovine adenovirus types 1 and 2. Res. Vet. Sci. 1969, 10, 39–45. [Google Scholar] [CrossRef]
- Saxegaard, F.; Bratberg, B. Isolation of bovine adenovirus type 1 from a calf with pneumo-enteritis. Acta Vet. Scand. 1971, 12, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.K.; Tikoo, S.K.; Van Donkersgoed, J.; Beskorwayne, T.; Godson, D.L.; Babiuk, L.A. Experimental inoculation of heifers with bovine adenovirus type 3. Can. J. Vet. Res. 1999, 63, 153–156. [Google Scholar]
- Mittal, S.K.; Middleton, D.M.; Tikoo, S.K.; Babiuk, L.A. Pathogenesis and immunogenicity of bovine adenovirus type 3 in cotton rats (Sigmodon hispidus). Virology 1995, 213, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Jesse, S.T.; Ciurkiewicz, M.; Siesenop, U.; Spitzbarth, I.; Osterhaus, A.; Baumgärtner, W.; Ludlow, M. Molecular characterization of a bovine adenovirus type 7 (Bovine Atadenovirus F) strain isolated from a systemically infected calf in Germany. Virol. J. 2022, 19, 89. [Google Scholar] [CrossRef]
- Stalber, E.; Renshaw, H.W.; Boro, C.; Mattson, D.; Frank, F.W. Isolation of a subgroup two adenovirus from calf with weak calf syndrome. Can. J. Comp. Med. 1976, 40, 98–103. [Google Scholar]
- Yokoi, K.; Okazaki, H.; Inahara, K.; Hatama, S. Prevalence of eight bovine viruses in sika deer (Cervus nippon yesoensis) in Japan. Vet. Rec. 2009, 165, 754–755. [Google Scholar]
- Adair, B.M.; McKillop, E.R.; Smyth, J.A.; Curran, W.L.; McNulty, M.S. Bovine adenovirus type 10: Properties of viruses isolated from cases of bovine haemorrhagic enterocolitis. Vet. Rec. 1996, 138, 250–252. [Google Scholar] [CrossRef]
- Smyth, J.A.; Benkö, M.; Moffett, D.A.; Harrach, B. Bovine adenovirus type 10 identified in fatal cases of adenovirus-associated enteric disease in cattle by in situ hybridization. J. Clin. Microbiol. 1996, 34, 1270–1274. [Google Scholar] [CrossRef]
- Darbyshire, J.H. Oncogenicity of bovine adenovirus type 3 in hamsters. Nature 1966, 211, 102. [Google Scholar] [CrossRef]
- Rondhuis, P.R. Induction of tumors in hamsters with a bovine adenovirus strain (serotype 8). Arch. Die Gesamte Virusforsch. 1973, 41, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.S.; Idamakanti, N.; Zakhartchouk, A.N.; Baxi, M.K.; Lee, J.B.; Pyne, C.; Babiuk, L.A.; Tikoo, S.K. Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3. J. Virol. 1998, 72, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.K.; Prevec, L.; Babiuk, L.A.; Graham, F.L. Sequence analysis of bovine adenovirus type 3 early region 3 and fibre protein genes. J. Gen. Virol. 1993, 74 Pt 12, 3295–3300. [Google Scholar] [CrossRef]
- Ruigrok, R.W.; Barge, A.; Mittal, S.K.; Jacrot, B. The fibre of bovine adenovirus type 3 is very long but bent. J. Gen. Virol. 1994, 75 Pt 8, 2069–2073. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Vidovszky, M.Z.; Ballmann, M.Z.; Sanz-Gaitero, M.; Singh, A.K.; Harrach, B.; Benkő, M.; van Raaij, M.J. Crystal structure of the fibre head domain of bovine adenovirus 4, a ruminant atadenovirus. Virol. J. 2015, 12, 81. [Google Scholar] [CrossRef]
- Wickham, T.J.; Mathias, P.; Cheresh, D.A.; Nemerow, G.R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993, 73, 309–319. [Google Scholar] [CrossRef]
- Bergelson, J.M.; Cunningham, J.A.; Droguett, G.; Kurt-Jones, E.A.; Krithivas, A.; Hong, J.S.; Horwitz, M.S.; Crowell, R.L.; Finberg, R.W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275, 1320–1323. [Google Scholar] [CrossRef]
- Bangari, D.S.; Sharma, A.; Mittal, S.K. Bovine adenovirus type 3 internalization is independent of primary receptors of human adenovirus type 5 and porcine adenovirus type 3. Biochem. Biophys. Res. Commun. 2005, 331, 1478–1484. [Google Scholar] [CrossRef]
- Snijder, J.; Reddy, V.S.; May, E.R.; Roos, W.H.; Nemerow, G.R.; Wuite, G.J. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol. 2013, 87, 2756–2766. [Google Scholar] [CrossRef]
- Wiethoff, C.M.; Wodrich, H.; Gerace, L.; Nemerow, G.R. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J. Virol. 2005, 79, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Bremner, K.H.; Scherer, J.; Yi, J.; Vershinin, M.; Gross, S.P.; Vallee, R.B. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 2009, 6, 523–535. [Google Scholar] [CrossRef]
- Cassany, A.; Ragues, J.; Guan, T.; Bégu, D.; Wodrich, H.; Kann, M.; Nemerow, G.R.; Gerace, L. Nuclear import of adenovirus DNA involves direct interaction of hexon with an N-terminal domain of the nucleoporin Nup214. J. Virol. 2015, 89, 1719–1730. [Google Scholar] [CrossRef]
- Strunze, S.; Engelke, M.F.; Wang, I.H.; Puntener, D.; Boucke, K.; Schleich, S.; Way, M.; Schoenenberger, P.; Burckhardt, C.J.; Greber, U.F. Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe 2011, 10, 210–223. [Google Scholar] [CrossRef]
- Trotman, L.C.; Mosberger, N.; Fornerod, M.; Stidwill, R.P.; Greber, U.F. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat. Cell Biol. 2001, 3, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.S.; Chen, Y.; Idamakanti, N.; Pyne, C.; Babiuk, L.A.; Tikoo, S.K. Characterization of early region 1 and pIX of bovine adenovirus-3. Virology 1999, 253, 299–308. [Google Scholar] [CrossRef] [PubMed]
- White, E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 2001, 20, 7836–7846. [Google Scholar] [CrossRef]
- Frisch, S.M.; Mymryk, J.S. Adenovirus-5 E1A: Paradox and paradigm. Nat. Rev. Mol. Cell Biol. 2002, 3, 441–452. [Google Scholar] [CrossRef]
- Zhou, Y.; Reddy, P.S.; Babiuk, L.A.; Tikoo, S.K. Bovine adenovirus type 3 E1B(small) protein is essential for growth in bovine fibroblast cells. Virology 2001, 288, 264–274. [Google Scholar] [CrossRef]
- Mul, Y.M.; Verrijzer, C.P.; van der Vliet, P.C. Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J. Virol. 1990, 64, 5510–5518. [Google Scholar] [CrossRef]
- Hoeben, R.C.; Uil, T.G. Adenovirus DNA replication. Cold Spring Harb. Perspect. Biol. 2013, 5, a013003. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.; Leith, I.R.; Nicholson, J.; Hounsell, J.; Hay, R.T. Role of preterminal protein processing in adenovirus replication. J. Virol. 1997, 71, 6381–6389. [Google Scholar] [CrossRef] [PubMed]
- de Jong, R.N.; van der Vliet, P.C.; Brenkman, A.B. Adenovirus DNA replication: Protein priming, jumping back and the role of the DNA binding protein DBP. Curr. Top. Microbiol. Immunol. 2003, 272, 187–211. [Google Scholar] [CrossRef] [PubMed]
- van Amerongen, H.; van Grondelle, R.; van der Vliet, P.C. Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption. Biochemistry 1987, 26, 4646–4652. [Google Scholar] [CrossRef]
- Charman, M.; Herrmann, C.; Weitzman, M.D. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett. 2019, 593, 3531–3550. [Google Scholar] [CrossRef]
- Graham, F.L. Covalently closed circles of human adenovirus DNA are infectious. EMBO J. 1984, 3, 2917–2922. [Google Scholar] [CrossRef]
- Russell, W.C. Adenoviruses: Update on structure and function. J. Gen. Virol. 2009, 90 Pt 1, 1–20. [Google Scholar] [CrossRef]
- Said, A.; Wang, W.; Woldermariam, T.; Tikoo, S.K. Domains of bovine adenovirus-3 protein 22K involved in interacting with viral protein 52K and cellular importins α-5/α-7. Virology 2018, 522, 209–219. [Google Scholar] [CrossRef]
- Hong, S.S.; Szolajska, E.; Schoehn, G.; Franqueville, L.; Myhre, S.; Lindholm, L.; Ruigrok, R.W.; Boulanger, P.; Chroboczek, J. The 100K-chaperone protein from adenovirus serotype 2 (Subgroup C) assists in trimerization and nuclear localization of hexons from subgroups C and B adenoviruses. J. Mol. Biol. 2005, 352, 125–138. [Google Scholar] [CrossRef]
- Ostapchuk, P.; Hearing, P. Control of adenovirus packaging. J. Cell. Biochem. 2005, 96, 25–35. [Google Scholar] [CrossRef]
- Ahi, Y.S.; Vemula, S.V.; Hassan, A.O.; Costakes, G.; Stauffacher, C.; Mittal, S.K. Adenoviral L4 33K forms ring-like oligomers and stimulates ATPase activity of IVa2: Implications in viral genome packaging. Front. Microbiol. 2015, 6, 318. [Google Scholar] [CrossRef]
- Ahi, Y.S.; Mittal, S.K. Components of Adenovirus Genome Packaging. Front. Microbiol. 2016, 7, 1503. [Google Scholar] [CrossRef]
- Ahi, Y.S.; Hassan, A.O.; Vemula, S.V.; Li, K.; Jiang, W.; Zhang, G.J.; Mittal, S.K. Adenoviral E4 34K protein interacts with virus packaging components and may serve as the putative portal. Sci. Rep. 2017, 7, 7582. [Google Scholar] [CrossRef]
- Gupta, S.P.; Shaik, B.; Prabhakar, Y.S. Advances in Studies on Adenovirus Proteases and Their Inhibitors. In Viral Proteases and Their Inhibitors; Gupta, S.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 59–75. [Google Scholar]
- Zhang, H.; Wang, H.; An, Y.; Chen, Z. Construction and application of adenoviral vectors. Mol. Ther. Nucleic Acids 2023, 34, 102027. [Google Scholar] [CrossRef]
- Bangari, D.S.; Shukla, S.; Mittal, S.K. Comparative transduction efficiencies of human and nonhuman adenoviral vectors in human, murine, bovine, and porcine cells in culture. Biochem. Biophys. Res. Commun. 2005, 327, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.K.; Prevec, L.; Graham, F.L.; Babiuk, L.A. Development of a bovine adenovirus type 3-based expression vector. J. Gen. Virol. 1995, 76 Pt 1, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Zakhartchouk, A.N.; Reddy, P.S.; Baxi, M.; Baca-Estrada, M.E.; Mehtali, M.; Babiuk, L.A.; Tikoo, S.K. Construction and characterization of E3-deleted bovine adenovirus type 3 expressing full-length and truncated form of bovine herpesvirus type 1 glycoprotein gD. Virology 1998, 250, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.K.; Middleton, D.M.; Tikoo, S.K.; Prevec, L.; Graham, F.L.; Babiuk, L.A. Pathology and immunogenicity in the cotton rat (Sigmodon hispidus) model after infection with a bovine adenovirus type 3 recombinant virus expressing the firefly luciferase gene. J. Gen. Virol. 1996, 77 Pt 1, 1–9. [Google Scholar] [CrossRef]
- van Olphen, A.L.; Mittal, S.K. Generation of infectious genome of bovine adenovirus type 3 by homologous recombination in bacteria. J. Virol. Methods 1999, 77, 125–129. [Google Scholar] [CrossRef]
- Reddy, P.S.; Idamakanti, N.; Chen, Y.; Whale, T.; Babiuk, L.A.; Mehtali, M.; Tikoo, S.K. Replication-defective bovine adenovirus type 3 as an expression vector. J. Virol. 1999, 73, 9137–9144. [Google Scholar] [CrossRef]
- Du, E.; Tikoo, S.K. Efficient replication and generation of recombinant bovine adenovirus-3 in nonbovine cotton rat lung cells expressing I-SceI endonuclease. J. Gene Med. 2010, 12, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Sayedahmed, E.E.; Alhashimi, M.; Elkashif, A.; Gairola, V.; Murala, M.S.T.; Sambhara, S.; Mittal, S.K. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Vaccines 2025, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, L.E.; Kumar, P.; Gaba, A.; Makadiya, N.; Tikoo, S.K. Bovine adenovirus-3 as a vaccine delivery vehicle. Vaccine 2015, 33, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Baxi, M.K.; Robertson, J.; Babiuk, L.A.; Tikoo, S.K. Mutational analysis of early region 4 of bovine adenovirus type 3. Virology 2001, 290, 153–163. [Google Scholar] [CrossRef]
- van Olphen, A.L.; Tikoo, S.K.; Mittal, S.K. Characterization of bovine adenovirus type 3 E1 proteins and isolation of E1-expressing cell lines. Virology 2002, 295, 108–118. [Google Scholar] [CrossRef]
- Patel, A.K.; Tikoo, S.K. 293T cells expressing simian virus 40 T antigen are semi-permissive to bovine adenovirus type 3 infection. J. Gen. Virol. 2006, 87, 817–821. [Google Scholar] [CrossRef]
- Zheng, B.; Mittal, S.K.; Graham, F.L.; Prevec, L. The E1 sequence of bovine adenovirus type 3 and complementation of human adenovirus type 5 E1A function in bovine cells. Virus Res. 1994, 31, 163–186. [Google Scholar] [CrossRef]
- van Olphen, A.L.; Mittal, S.K. Development and characterization of bovine x human hybrid cell lines that efficiently support the replication of both wild-type bovine and human adenoviruses and those with E1 deleted. J. Virol. 2002, 76, 5882–5892. [Google Scholar] [CrossRef]
- Singh, N.; Pandey, A.; Jayashankar, L.; Mittal, S.K. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol. Ther. 2008, 16, 965–971. [Google Scholar] [CrossRef]
- Kuchipudi, S.V.; Nelli, R.K.; Gontu, A.; Satyakumar, R.; Surendran Nair, M.; Subbiah, M. Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021, 13, 262. [Google Scholar] [CrossRef]
- Sharma, A.; Bangari, D.S.; Tandon, M.; Hogenesch, H.; Mittal, S.K. Evaluation of innate immunity and vector toxicity following inoculation of bovine, porcine or human adenoviral vectors in a mouse model. Virus Res. 2010, 153, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.K.; Ahi, Y.S.; Vemula, S.V. Xenogenic Adenoviral Vectors. In Adenoviral Vectors for Gene Therapy, 2nd ed.; Curiel, D.T., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 495–528. [Google Scholar]
- Sayedahmed, E.E.; Elshafie, N.O.; Zhang, G.; Mohammed, S.I.; Sambhara, S.; Mittal, S.K. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front. Immunol. 2023, 14, 1305937. [Google Scholar] [CrossRef]
- Zhang, L.; Gomis, S.; Tikoo, S.K. Evaluation of promoters for foreign gene expression in the E3 region of bovine adenovirus type-3. Virus Res. 2005, 110, 169–176. [Google Scholar] [CrossRef]
- Zakhartchouk, A.N.; Pyne, C.; Mutwiri, G.K.; Papp, Z.; Baca-Estrada, M.E.; Griebel, P.; Babiuk, L.A.; Tikoo, S.K. Mucosal immunization of calves with recombinant bovine adenovirus-3: Induction of protective immunity to bovine herpesvirus-1. J. Gen. Virol. 1999, 80 Pt 5, 1263–1269. [Google Scholar] [CrossRef]
- Brownlie, R.; Kumar, P.; Babiuk, L.A.; Tikoo, S.K. Recombinant bovine adenovirus-3 co-expressing bovine respiratory syncytial virus glycoprotein G and truncated glycoprotein gD of bovine herpesvirus-1 induce immune responses in cotton rats. Mol. Biotechnol. 2015, 57, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Baxi, M.K.; Deregt, D.; Robertson, J.; Babiuk, L.A.; Schlapp, T.; Tikoo, S.K. Recombinant bovine adenovirus type 3 expressing bovine viral diarrhea virus glycoprotein E2 induces an immune response in cotton rats. Virology 2000, 278, 234–243. [Google Scholar] [CrossRef]
- Khan, A.; Sayedahmed, E.E.; Singh, V.K.; Mishra, A.; Dorta-Estremera, S.; Nookala, S.; Canaday, D.H.; Chen, M.; Wang, J.; Sastry, K.J.; et al. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep. Med. 2021, 2, 100372. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Sayedahmed, E.E.; Sambhara, S.; Mittal, S.K. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022, 14, 1684. [Google Scholar] [CrossRef]
- Tandon, M.; Sharma, A.; Vemula, S.V.; Bangari, D.S.; Mittal, S.K. Sequential administration of bovine and human adenovirus vectors to overcome vector immunity in an immunocompetent mouse model of breast cancer. Virus Res. 2012, 163, 202–211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayedahmed, E.E.; Gairola, V.; Murala, M.S.T.; Mittal, S.K. Bovine Adenoviral Vector-Based Platform for Vaccine Development. Vaccines 2025, 13, 494. https://doi.org/10.3390/vaccines13050494
Sayedahmed EE, Gairola V, Murala MST, Mittal SK. Bovine Adenoviral Vector-Based Platform for Vaccine Development. Vaccines. 2025; 13(5):494. https://doi.org/10.3390/vaccines13050494
Chicago/Turabian StyleSayedahmed, Ekramy E., Vivek Gairola, Muralimanohara S. T. Murala, and Suresh K. Mittal. 2025. "Bovine Adenoviral Vector-Based Platform for Vaccine Development" Vaccines 13, no. 5: 494. https://doi.org/10.3390/vaccines13050494
APA StyleSayedahmed, E. E., Gairola, V., Murala, M. S. T., & Mittal, S. K. (2025). Bovine Adenoviral Vector-Based Platform for Vaccine Development. Vaccines, 13(5), 494. https://doi.org/10.3390/vaccines13050494