Dengue Vaccine Development and Deployment into Routine Immunization
Abstract
:1. Introduction
2. Why Is There a Need for a Dengue Vaccine?
3. What Is the Current Status of Dengue Vaccine Development?
4. How to Use TAK-003 (Qdenga) in Endemic Populations?
5. What About the Reported Cases of Anaphylaxis Post-Vaccination?
6. What Are the Programmatic Considerations for Including TAK-003 (Qdenga) in Routine Immunization?
7. What Are the Key Steps in Deciding Whether a Dengue Vaccine Should Be Introduced into a Routine Immunization Program?
- Engage Key Stakeholders
- ○
- Involve representatives from public health, government agencies, and advocacy groups.
- ○
- High-level advocates, such as government officials or influential figures, can help drive discussions and secure support.
- Consult NITAG
- ○
- Seek expert review of the dengue vaccine’s evidence and recommendations.
- ○
- Engage regional dengue specialists if additional expertise is needed.
- Establish a Technical Working Group (TWG)
- ○
- Form a multi-sectoral team of experts in immunization, infectious diseases, and public health to provide technical guidance and coordination.
- Prioritize High-Transmission Regions
- ○
- Identify areas with the highest dengue burden for targeted rollout.
- ○
- Develop a phased introduction plan based on subnational needs to optimize resource allocation.
- Integrate into National Strategies
- ○
- Upon approval, incorporate the vaccine into the National Immunization Strategy and Primary Health Care Strategy.
- ○
- Define funding, implementation, and monitoring frameworks.
- Develop Vaccination Plans
- ○
- Create locally tailored plans prioritizing school-age children and adolescents.
- ○
- Design micro plans within existing immunization structures.
- Leverage Existing Vaccination Platforms
- ○
- Utilize school-based and adolescent vaccination programs.
- ○
- Consider co-administering with other vaccines (e.g., HPV, tetanus) and integrating with other health initiatives (e.g., WASH programs) to enhance coverage.
- Establish Governance Structures
- ○
- Set up national, subnational, and district-level committees to oversee vaccine procurement, distribution, safety, and surveillance.
- Set Subnational Targets
- ○
- Define clear coverage goals, aiming for at least 90% vaccination in target populations.
- ○
- Integrate with school-based health programs and include catch-up vaccinations for broader age groups.
8. What Is the Modeled Impact of TAK-003 (QDenga) in Endemic Settings?
9. What About the Use of Qdenga in Travelers?
10. Which Other Dengue Vaccines Are in the Pipeline?
11. Conclusions
Funding
Conflicts of Interest
References
- Wilder-Smith, A.; Ooi, E.E.; Horstick, O.; Wills, B. Dengue. Lancet 2019, 393, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef]
- Messina, J.P.; Brady, O.J.; Pigott, D.M.; Brownstein, J.S.; Hoen, A.G.; Hay, S.I. A global compendium of human dengue virus occurrence. Sci. Data 2014, 1, 140004. [Google Scholar] [CrossRef] [PubMed]
- Rowe, E.K.; Leo, Y.S.; Wong, J.G.; Thein, T.L.; Gan, V.C.; Lee, L.K.; Lye, D.C. Challenges in dengue fever in the elderly: Atypical presentation and risk of severe dengue and hospital-acquired infection [corrected]. PLoS Negl. Trop. Dis. 2014, 8, e2777. [Google Scholar] [CrossRef]
- Woon, Y.L.; Hor, C.P.; Hussin, N.; Zakaria, A.; Goh, P.P.; Cheah, W.K. A Two-Year Review on Epidemiology and Clinical Characteristics of Dengue Deaths in Malaysia, 2013–2014. PLoS Negl. Trop. Dis. 2016, 10, e0004575. [Google Scholar] [CrossRef] [PubMed]
- Vouga, M.; Chiu, Y.C.; Pomar, L.; de Meyer, S.V.; Masmejan, S.; Genton, B.; Musso, D.; Baud, D.; Stojanov, M. Dengue, Zika and chikungunya during pregnancy: Pre- and post-travel advice and clinical management. J. Travel Med. 2019, 26, taz077. [Google Scholar] [CrossRef]
- Lee, Y.H.; Leong, W.Y.; Wilder-Smith, A. Markers of dengue severity: A systematic review of cytokines and chemokines. J. Gen. Virol. 2016, 97, 3103–3119. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Gubler, D.J. Geographic expansion of dengue: The impact of international travel. Med. Clin. N. Am. 2008, 92, 1377–1390. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Lindsay, S.W.; Scott, T.W.; Ooi, E.E.; Gubler, D.J.; Das, P. The Lancet Commission on dengue and other Aedes-transmitted viral diseases. Lancet 2020, 395, 1890–1891. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Yang, X.; Quam, M.B.M.; Zhang, T.; Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 2021, 28, taab146. [Google Scholar] [CrossRef] [PubMed]
- Amatya, B.; Schwartz, E.; Biber, A.; Erster, O.; Lustig, Y.; Pradhan, R.; Khadka, B.; Pandey, P. Dengue serotype characterization during the 2022 dengue epidemic in Kathmandu, Nepal. J. Travel Med. 2023, 30, taad034. [Google Scholar] [CrossRef] [PubMed]
- Bijukchhe, S.M.; Hill, M.; Adhikari, B.; Shrestha, A.; Shrestha, S. Nepal’s worst dengue outbreak is a wake-up call for action. J. Travel Med. 2023, 30, taad112. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Menendez, M.; Angelo, K.M.; de Miguel Buckley, R.; Bottieau, E.; Huits, R.; Grobusch, M.P.; Gobbi, F.G.; Asgeirsson, H.; Duvignaud, A.; Norman, F.F.; et al. Dengue outbreak amongst travellers returning from Cuba—GeoSentinel surveillance network, January–September 2022. J. Travel Med. 2023, 30, taac139. [Google Scholar] [CrossRef] [PubMed]
- Duvignaud, A.; Stoney, R.J.; Angelo, K.M.; Chen, L.H.; Cattaneo, P.; Motta, L.; Gobbi, F.G.; Bottieau, E.; Bourque, D.L.; Popescu, C.P.; et al. Epidemiology of travel-associated dengue from 2007 to 2022: A GeoSentinel analysis. J. Travel Med. 2024, 31, taae089. [Google Scholar] [CrossRef]
- Lee, S.Y.; Shih, H.I.; Lo, W.C.; Lu, T.H.; Chien, Y.W. Discrepancies in dengue burden estimates: A comparative analysis of reported cases and global burden of disease study, 2010–2019. J. Travel Med. 2024, 31, taae069. [Google Scholar] [CrossRef]
- Salvo, P.F.; Baldin, G.; Raffaelli, F.; Ciccullo, A.; Borghetti, A.; Tamburrini, E.; Ricci, R.; Di Donato, M.; Di Giambenedetto, S.; Torti, C. Autochthonous dengue outbreak in Rome, Italy, in 2023. J. Travel Med. 2024, 31, taae111. [Google Scholar] [CrossRef]
- Achee, N.L.; Gould, F.; Perkins, T.A.; Reiner, R.C., Jr.; Morrison, A.C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 2015, 9, e0003655. [Google Scholar] [CrossRef]
- Lim, J.T.; Mailepessov, D.; Chong, C.S.; Dickens, B.; Lai, Y.L.; Ng, Y.; Deng, L.; Lee, C.; Tan, L.Y.; Chain, G.; et al. Assessing Wolbachia-mediated sterility for dengue control: Emulation of a cluster-randomized target trial in Singapore. J. Travel Med. 2024, 31, taae103. [Google Scholar] [CrossRef]
- O’Reilly, K.M.; Hendrickx, E.; Kharisma, D.D.; Wilastonegoro, N.N.; Carrington, L.B.; Elyazar, I.R.F.; Kucharski, A.J.; Lowe, R.; Flasche, S.; Pigott, D.M.; et al. Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: A modelling study. BMC Med. 2019, 17, 172. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef]
- Izmirly, A.M.; Alturki, S.O.; Alturki, S.O.; Connors, J.; Haddad, E.K. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front. Immunol. 2020, 11, 1055. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, J.J.; Katzelnick, L.C.; Burger-Calderon, R.; Gallini, J.; Moore, R.H.; Kuan, G.; Balmaseda, A.; Pinsky, B.A.; Harris, E. Antibody-Dependent Enhancement of Severe Disease Is Mediated by Serum Viral Load in Pediatric Dengue Virus Infections. J. Infect. Dis. 2020, 221, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- Hadinegoro, S.R.; Arredondo-Garcia, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Ismail, H.I.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N. Engl. J. Med. 2015, 373, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Flasche, S.; Smith, P.G. Vaccine-attributable severe dengue in the Philippines. Lancet 2019, 394, 2151–2152. [Google Scholar] [CrossRef]
- Flasche, S.; Wilder-Smith, A.; Hombach, J.; Smith, P.G. Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines. Wellcome Open Res. 2019, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Hombach, J.; Ferguson, N.; Selgelid, M.; O’Brien, K.; Vannice, K.; Barrett, A.; Ferdinand, E.; Flasche, S.; Guzman, M.; et al. Deliberations of the Strategic Advisory Group of Experts on Immunization on the use of CYD-TDV dengue vaccine. Lancet Infect. Dis. 2019, 19, e31–e38. [Google Scholar] [CrossRef]
- Rivera, L.; Biswal, S.; Saez-Llorens, X.; Reynales, H.; Lopez-Medina, E.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Kosalaraksa, P.; Martinez Vargas, L.; et al. Three-year Efficacy and Safety of Takeda’s Dengue Vaccine Candidate (TAK-003). Clin. Infect. Dis. 2022, 75, 107–117. [Google Scholar] [CrossRef]
- SAGE Background Paper on the Use of TAK-003 Dengue Vaccine 2023. Available online: https://terrance.who.int/mediacentre/data/sage/SAGE_eYB_Sept2023.pdf (accessed on 15 January 2025).
- White, L.J.; Young, E.F.; Stoops, M.J.; Henein, S.R.; Adams, E.C.; Baric, R.S.; de Silva, A.M. Defining levels of dengue virus serotype-specific neutralizing antibodies induced by a live attenuated tetravalent dengue vaccine (TAK-003). PLoS Negl. Trop. Dis. 2021, 15, e0009258. [Google Scholar] [CrossRef]
- Bengolea, A.; Scigliano, C.; Ramos-Rojas, J.T.; Rada, G.; Catalano, H.N.; Izcovich, A. Effectiveness and safety of the tetravalent TAK-003 dengue vaccine: A systematic review. Medicina (Buenos Aires) 2024, 84, 689–707. [Google Scholar]
- de Silva, A.; White, L. Immunogenicity of a Live Dengue Vaccine (TAK-003). J. Infect. Dis. 2022, 227, 163–164. [Google Scholar] [CrossRef] [PubMed]
- El Hindi, T.; Alera, M.T.; Bravo, L.; Moreira, E.D., Jr.; Dietze, R.; Oliveira, A.L.; Watanaveeradej, V.; Zhao, Y.; Sonderegger, I.; Tricou, V.; et al. Estimated Efficacy of TAK-003 Against Asymptomatic Dengue Infection in Children/Adolescents Participating in the DEN-301 Trial in Asia Pacific and Latin America. J. Infect. Dis. 2025, jiaf145. [Google Scholar] [CrossRef] [PubMed]
- Fernando, L.; Kastner, R.; Wickramasinghe, P.; Fernando, A.D.; Gunasekera, D.; Nguyen, V.H.; Liu, M.; LeFevre, I.; Wallace, D.; Folschweiller, N.; et al. Role of the dengue vaccine TAK-003 in an outbreak response: Modeling the Sri Lanka experience. PLoS Negl. Trop. Dis. 2024, 18, e0012376. [Google Scholar] [CrossRef]
- Flacco, M.E.; Bianconi, A.; Cioni, G.; Fiore, M.; Calo, G.L.; Imperiali, G.; Orazi, V.; Tiseo, M.; Troia, A.; Rosso, A.; et al. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines 2024, 12, 770. [Google Scholar] [CrossRef]
- LeFevre, I.; Bravo, L.; Folschweiller, N.; Medina, E.L.; Moreira, E.D., Jr.; Nordio, F.; Sharma, M.; Tharenos, L.M.; Tricou, V.; Watanaveeradej, V.; et al. Bridging the immunogenicity of a tetravalent dengue vaccine (TAK-003) from children and adolescents to adults. NPJ Vaccines 2023, 8, 75. [Google Scholar] [CrossRef]
- Lopez-Medina, E.; Biswal, S.; Saez-Llorens, X.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Vargas, L.M.; Alera, M.T.; Velasquez, H.; Reynales, H.; et al. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J. Infect. Dis. 2022, 225, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Winkle, P.; Faccin, A.; Nordio, F.; LeFevre, I.; Tsoukas, C.G. An open-label, Phase 3 trial of TAK-003, a live attenuated dengue tetravalent vaccine, in healthy US adults: Immunogenicity and safety when administered during the second half of a 24-month shelf-life. Hum. Vaccin. Immunother. 2023, 19, 2254964. [Google Scholar] [CrossRef] [PubMed]
- Petri, E.; Biswal, S.; Lloyd, E.; Tricou, V.; Folschweiller, N. Early onset of protection of the TAK-003 dengue vaccine: Data from the DEN-301 clinical trial. Vaccine 2024, 42, 126309. [Google Scholar] [CrossRef]
- Rauscher, M.; Youard, Z.; Faccin, A.; Patel, S.S.; Pang, H.; Zent, O. Pregnancy outcomes following unintentional exposure to TAK-003, a live-attenuated tetravalent dengue vaccine. Expert Rev. Vaccines 2025, 24, 221–229. [Google Scholar] [CrossRef]
- Saez-Llorens, X.; Biswal, S.; Borja-Tabora, C.; Fernando, L.; Liu, M.; Wallace, D.; Folschweiller, N.; Reynales, H.; LeFevre, I.; Group, T.S. Effect of the Tetravalent Dengue Vaccine TAK-003 on Sequential Episodes of Symptomatic Dengue. Am. J. Trop. Med. Hyg. 2023, 108, 722–726. [Google Scholar] [CrossRef]
- Sirivichayakul, C.; Biswal, S.; Saez-Llorens, X.; Lopez-Medina, E.; Borja-Tabora, C.; Bravo, L.; Kosalaraksa, P.; Alera, M.T.; Reynales, H.; Rivera, L.; et al. Efficacy and Safety of a Tetravalent Dengue Vaccine (TAK-003) in Children With Prior Japanese Encephalitis or Yellow Fever Vaccination. J. Infect. Dis. 2024, 230, e1214–e1225. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Essink, B.; Ervin, J.E.; Turner, M.; Escudero, I.; Rauscher, M.; Brose, M.; Lefevre, I.; Borkowski, A.; Wallace, D. Immunogenicity and safety of concomitant and sequential administration of yellow fever YF-17D vaccine and tetravalent dengue vaccine candidate TAK-003: A phase 3 randomized, controlled study. PLoS Negl. Trop. Dis. 2023, 17, e0011124. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Eyre, S.; Ramjee, M.; Collini, P.; Mojares, Z.; Loeliger, E.; Mandaric, S.; Rauscher, M.; Brose, M.; Lefevre, I.; et al. A randomized phase 3 trial of the immunogenicity and safety of coadministration of a live-attenuated tetravalent dengue vaccine (TAK-003) and an inactivated hepatitis a (HAV) virus vaccine in a dengue non-endemic country. Vaccine 2023, 41, 1398–1407. [Google Scholar] [CrossRef]
- Tricou, V.; Winkle, P.J.; Tharenos, L.M.; Rauscher, M.; Escudero, I.; Hoffman, E.; LeFevre, I.; Borkowski, A.; Wallace, D. Consistency of immunogenicity in three consecutive lots of a tetravalent dengue vaccine candidate (TAK-003): A randomized placebo-controlled trial in US adults. Vaccine 2023, 41, 6999–7006. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Yu, D.; Reynales, H.; Biswal, S.; Saez-Llorens, X.; Sirivichayakul, C.; Lopez, P.; Borja-Tabora, C.; Bravo, L.; Kosalaraksa, P.; et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4.5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2024, 12, e257–e270. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A. TAK-003 dengue vaccine as a new tool to mitigate dengue in countries with a high disease burden. Lancet Glob. Health 2024, 12, e179–e180. [Google Scholar] [CrossRef]
- Patel, S.S.; Rauscher, M.; Kudela, M.; Pang, H. Clinical Safety Experience of TAK-003 for Dengue Fever: A New Tetravalent Live Attenuated Vaccine Candidate. Clin. Infect. Dis. 2023, 76, e1350–e1359. [Google Scholar] [CrossRef]
- Daniels, B.C.; Ferguson, N.; Dorigatti, I. Efficacy, public health impact and optimal use of the Takeda dengue vaccine. MedRxiv 2025. [Google Scholar] [CrossRef]
- WHO. WHO position paper on dengue vaccines-May 2024. Wkly. Epidemiol. Rec. 2024, 18, 203–224. [Google Scholar]
- WHO. WHO Position Paper on TAK-003 Dengue Vaccine 2024. Available online: https://www.who.int/publications/i/item/who-wer-9918-203-224 (accessed on 15 January 2025).
- Percio, J.; Kobayashi, C.D.; Silva, R.M.A.; Marinho, A.; Capovilla, L.; Andrade, P.H.S.; da Nobrega, M.E.B.; Cabral, C.M.; de Moraes, M.B.; Werneck, G.L.; et al. Safety signal detected: Anaphylaxis after attenuated dengue vaccine (TAK-003)—Brazil, 1 March 2023–11 March 2024. Vaccine 2024, 42, 126407. [Google Scholar] [CrossRef]
- Update on Safety of the Dengue Vaccine Qdenga®. Available online: https://www.who.int/groups/global-advisory-committee-on-vaccine-safety/topics/dengue-vaccines (accessed on 15 January 2025).
- Manciulli, T.; Zammarchi, L.; Lagi, F.; Fiorelli, C.; Mencarini, J.; Fognani, M.; Rossolini, G.M.; Pollini, S.; Bartoloni, A.; Spinicci, M. Emergence of dengue fever: Sentinel travellers uncover outbreak in Sharm El-Sheikh, Egypt, May 2024. J. Travel Med. 2024, 31, taae080. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, S.L.; Leder, K. Dengue severity in travellers: Challenges and insights. J. Travel Med. 2023, 30, taad146. [Google Scholar] [CrossRef] [PubMed]
- Sohail, A.; Anders, K.L.; McGuinness, S.L.; Leder, K. The epidemiology of imported and locally acquired dengue in Australia, 2012–2022. J. Travel Med. 2024, 31, taae014. [Google Scholar] [CrossRef] [PubMed]
- Kitro, A.; Imad, H.A.; Pisutsan, P.; Matsee, W.; Sirikul, W.; Sapbamrer, R.; Rapheal, E.; Fernandez, S.; Cotrone, T.S.; Farmer, A.R.; et al. Seroprevalence of dengue, Japanese encephalitis and Zika among long-term expatriates in Thailand. J. Travel Med. 2024, 31, taae022. [Google Scholar] [CrossRef]
- Freedman, D.O. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; what about travellers? J. Travel Med. 2023, 30, taad132. [Google Scholar] [CrossRef]
- Kopke, C.; Rothe, C.; Zeder, A.; Boecken, G.; Feldt, T.; Janke, C.; Jordan, S.; Kohler, C.; Lobermann, M.; Muller, A.; et al. First clinical experiences with the tetravalent live vaccine against dengue (Qdenga (R)) in travellers: A multicentric TravelMedVac study in Germany. J. Travel Med. 2025, 32, taaf004. [Google Scholar] [CrossRef]
- Nivarthi, U.K.; Swanstrom, J.; Delacruz, M.J.; Patel, B.; Durbin, A.P.; Whitehead, S.S.; Kirkpatrick, B.D.; Pierce, K.K.; Diehl, S.A.; Katzelnick, L.; et al. A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nat. Commun. 2021, 12, 1102. [Google Scholar] [CrossRef]
- Wilder-Smith, A. The Dengue-in-Dhaka Initiative: Results from a phase 2 trial evaluating the TV005 tetravalent dengue vaccine in Bangladesh. Lancet Infect. Dis. 2024, 24, 112–113. [Google Scholar] [CrossRef]
- Wilder-Smith, A.B.; Freedman, D.O.; Wilder-Smith, A. Edging towards a third dengue vaccine. Lancet Infect. Dis. 2024, 24, 1182–1184. [Google Scholar] [CrossRef]
- TetraVax-DV (V180) Dengue Vaccine. Available online: https://www.precisionvaccinations.com/vaccines/tetravax-dv-v180-dengue-vaccine (accessed on 15 January 2025).
- Liu, X.; Salmon, D. Opportunities and challenges of mRNA technologies in the development of dengue vaccines. arXiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Thoresen, D.; Matsuda, K.; Urakami, A.; Ngwe Tun, M.M.; Nomura, T.; Moi, M.L.; Watanabe, Y.; Ishikawa, M.; Hau, T.T.T.; Yamamoto, H.; et al. A tetravalent dengue virus-like particle vaccine induces high levels of neutralizing antibodies and reduces dengue replication in non-human primates. J. Virol. 2024, 98, e0023924. [Google Scholar] [CrossRef] [PubMed]
- Saha, O.; Razzak, A.; Sarker, N.; Rahman, N.; bin Zahid, A.; Sultana, A.; Shishir, T.A.; Bahadur, N.M.; Rahaman, M.; Hossen, F.; et al. In silico design and evaluation of multi-epitope dengue virus vaccines: A promising approach to combat global dengue burden. Discov. Appl. Sci. 2024, 6, 210. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Harris, E. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017, 35, 4659–4669. [Google Scholar] [CrossRef] [PubMed]
- Ostrowsky, J.T.; Katzelnick, L.C.; Bourne, N.; Barrett, A.D.T.; Thomas, S.J.; Diamond, M.S.; Beasley, D.W.C.; Harris, E.; Wilder-Smith, A.; Leighton, T.; et al. Zika virus vaccines and monoclonal antibodies: A priority agenda for research and development. Lancet Infect. Dis. 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilder-Smith, A.; Cherian, T.; Hombach, J. Dengue Vaccine Development and Deployment into Routine Immunization. Vaccines 2025, 13, 483. https://doi.org/10.3390/vaccines13050483
Wilder-Smith A, Cherian T, Hombach J. Dengue Vaccine Development and Deployment into Routine Immunization. Vaccines. 2025; 13(5):483. https://doi.org/10.3390/vaccines13050483
Chicago/Turabian StyleWilder-Smith, Annelies, Thomas Cherian, and Joachim Hombach. 2025. "Dengue Vaccine Development and Deployment into Routine Immunization" Vaccines 13, no. 5: 483. https://doi.org/10.3390/vaccines13050483
APA StyleWilder-Smith, A., Cherian, T., & Hombach, J. (2025). Dengue Vaccine Development and Deployment into Routine Immunization. Vaccines, 13(5), 483. https://doi.org/10.3390/vaccines13050483