COVID-19 Vaccination in Patients with Hematological Malignances
Abstract
:1. Introduction
2. Search Methods
3. COVID-19 in HM Patients
4. SARS-CoV-2 Vaccination in HM Patients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 7 September 2023).
- Yuan, Y.; Jiao, B.; Qu, L.; Yang, D.; Liu, R. The development of COVID-19 treatment. Front. Immunol. 2023, 14, 1125246. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.-A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Senefeld, J.W.; Gorman, E.K.; Johnson, P.W.; Moir, M.E.; Klassen, S.A.; Carter, R.E.; Paneth, N.S.; Sullivan, D.J.; Morkeberg, O.H.; Wright, R.S.; et al. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2023, 7, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Cruciani, M.; Mengoli, C.; Casadevall, A.; Glingani, C.; Joyner, M.J.; Pirofski, L.-a.; Senefeld, J.W.; Shoham, S.; Sullivan, D.J.; et al. Convalescent plasma and predictors of mortality among hospitalized patients with COVID-19: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 1514–1522. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Focosi, D.; Hanley, D.F.; Cruciani, M.; Franchini, M.; Ou, J.; Casadevall, A.; Paneth, N. Outpatient randomized controlled trials to reduce COVID-19 hospitalization: Systematic review and meta-analysis. J. Med. Virol. 2023, 95, e29310. [Google Scholar] [CrossRef]
- Franchini, M.; Cruciani, M.; Casadevall, A.; Joyner, M.J.; Senefeld, J.W.; Sullivan, D.J.; Zani, M.; Focosi, D. Safety of COVID-19 convalescent plasma: A definitive systematic review and meta-analysis of randomized controlled trials. Transfusion 2023, 64, 388–399. [Google Scholar] [CrossRef]
- Focosi, D.; Franchini, M.; Maggi, F.; Shoham, S. COVID-19 therapeutics. Clin. Microbiol. Rev. 2024, 37, e0011923. [Google Scholar] [CrossRef]
- Graña, C.; Ghosn, L.; Evrenoglou, T.; Jarde, A.; Minozzi, S.; Bergman, H.; Buckley, B.S.; Probyn, K.; Villanueva, G.; Henschke, N.; et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst. Rev. 2022, 12, CD015477. [Google Scholar] [CrossRef]
- Beladiya, J.; Kumar, A.; Vasava, Y.; Parmar, K.; Patel, D.; Patel, S.; Dholakia, S.; Sheth, D.; Boddu, S.H.S.; Patel, C. Safety and efficacy of COVID-19 vaccines: A systematic review and meta-analysis of controlled and randomized clinical trials. Rev. Med. Virol. 2023, 34, e2507. [Google Scholar] [CrossRef]
- Martinson, M.L.; Lapham, J. Prevalence of Immunosuppression Among US Adults. JAMA 2024, 331, 880–882. [Google Scholar] [CrossRef]
- Hosseini-Moghaddam, S.M.; Shepherd, F.A.; Swayze, S.; Kwong, J.C.; Chan, K.K.W. SARS-CoV-2 Infection, Hospitalization, and Mortality in Adults With and Without Cancer. JAMA Netw. Open 2023, 6, e2331617. [Google Scholar] [CrossRef] [PubMed]
- Antinori, A.; Bausch-Jurken, M. The Burden of COVID-19 in the Immunocompromised Patient: Implications for Vaccination and Needs for the Future. J. Infect. Dis. 2023, 228, S4–S12. [Google Scholar] [CrossRef] [PubMed]
- Nevejan, L.; Ombelet, S.; Laenen, L.; Keyaerts, E.; Demuyser, T.; Seyler, L.; Soetens, O.; Van Nedervelde, E.; Naesens, R.; Geysels, D.; et al. Severity of COVID-19 among Hospitalized Patients: Omicron Remains a Severe Threat for Immunocompromised Hosts. Viruses 2022, 14, 2736. [Google Scholar] [CrossRef]
- Langerbeins, P.; Hallek, M. COVID-19 in patients with hematologic malignancy. Blood 2022, 140, 236–252. [Google Scholar] [CrossRef]
- Martínez, J.C.; Sica, R.A.; Stockerl-Goldstein, K.; Rubinstein, S.M. COVID-19 in Patients with Hematologic Malignancies: Outcomes and Options for Treatments. Acta Haematol. 2022, 145, 244–256. [Google Scholar] [CrossRef]
- Kakavandi, S.; Hajikhani, B.; Azizi, P.; Aziziyan, F.; Nabi-Afjadi, M.; Farani, M.R.; Zalpoor, H.; Azarian, M.; Saadi, M.I.; Gharesi-Fard, B.; et al. COVID-19 in patients with anemia and haematological malignancies: Risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun. Signal. 2024, 22, 126. [Google Scholar] [CrossRef]
- Luque-Paz, D.; Sesques, P.; Wallet, F.; Bachy, E.; Ader, F.; Lyon, H.S.G. B-cell malignancies and COVID-19: A narrative review. Clin. Microbiol. Infect. 2023, 29, 332–337. [Google Scholar] [CrossRef]
- Furlan, A.; Forner, G.; Cipriani, L.; Vian, E.; Rigoli, R.; Gherlinzoni, F.; Scotton, P. COVID-19 in B Cell-Depleted Patients After Rituximab: A Diagnostic and Therapeutic Challenge. Front. Immunol. 2021, 12, 763412. [Google Scholar] [CrossRef]
- Gur, I.; Giladi, A.; Isenberg, Y.N.; Neuberger, A.; Stern, A. COVID-19 in Patients with Hematologic Malignancies: Clinical Manifestations, Persistence, and Immune Response. Acta Haematol. 2022, 145, 297–309. [Google Scholar] [CrossRef]
- Passamonti, F.; Romano, A.; Salvini, M.; Merli, F.; Porta, M.G.D.; Bruna, R.; Coviello, E.; Romano, I.; Cairoli, R.; Lemoli, R.; et al. COVID-19 elicits an impaired antibody response against SARS-CoV-2 in patients with haematological malignancies. Br. J. Haematol. 2021, 195, 371–377. [Google Scholar] [CrossRef]
- Riddell, A.C.; Cutino-Moguel, T. The origins of new SARS-CoV-2 variants in immuncompromised individuals. Curr. Opin. HIV AIDS 2023, 18, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Sonnleitner, S.T.; Prelog, M.; Sonnleitner, S.; Hinterbichler, E.; Halbfurter, H.; Kopecky, D.B.C.; Almanzar, G.; Koblmüller, S.; Sturmbauer, C.; Feist, L.; et al. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat. Commun. 2022, 13, 2560. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.D.; Graham-Wooten, J.; Fitzgerald, A.S.; Sobel Leonard, A.; Cook, E.J.; Everett, J.K.; Rodino, K.G.; Moncla, L.H.; Kelly, B.J.; Collman, R.G.; et al. SARS-CoV-2 evolution during prolonged infection in immunocompromised patients. mBio 2024, 15, e0011024. [Google Scholar] [CrossRef] [PubMed]
- Machkovech, H.M.; Hahn, A.M.; Garonzik Wang, J.; Grubaugh, N.D.; Halfmann, P.J.; Johnson, M.C.; Lemieux, J.E.; O’Connor, D.H.; Piantadosi, A.; Wei, W.; et al. Persistent SARS-CoV-2 infection: Significance and implications. Lancet Infect. Dis. 2024, 24, e453–e462. [Google Scholar] [CrossRef]
- Laracy, J.C.; Kamboj, M.; Vardhana, S.A. Long and persistent COVID-19 in patients with hematologic malignancies: From bench to bedside. Curr. Opin. Infect. Dis. 2022, 35, 271–279. [Google Scholar] [CrossRef]
- Pavia, G.; Quirino, A.; Marascio, N.; Veneziano, C.; Longhini, F.; Bruni, A.; Garofalo, E.; Pantanella, M.; Manno, M.; Gigliotti, S.; et al. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J. Med. Virol. 2024, 96, e29708. [Google Scholar] [CrossRef]
- Iketani, S.; Ho, D.D. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem. Biol. 2024, 31, 632–657. [Google Scholar] [CrossRef]
- Focosi, D.; Sullivan, D.J.; Franchini, M. Development of antiviral drugs for COVID-19 in 2025: Unmet needs and future challenges. Expert Rev. Anti-Infect. Ther. 2025, 1–8. [Google Scholar] [CrossRef]
- Bertini, C.D.; Khawaja, F.; Sheshadri, A. Coronavirus Disease-2019 in the Immunocompromised Host. Rheum. Dis. Clin. N. Am. 2025, 51, 123–138. [Google Scholar] [CrossRef]
- SeyedAlinaghi, S.; Karimi, A.; Mirzapour, P.; Salmani, R.; Razi, A.; Mojdeganlou, H.; Mojdeganlou, P.; Qodrati, M.; Jashaninejad, R.; Paranjkhoo, P.; et al. SARS-CoV-2 Infection and Severity in Patients with Hematologic Malignancies: A Systematic Review. Infect. Disord. Drug Targets 2023, 23, 29–38. [Google Scholar] [CrossRef]
- DeWolf, S.; Laracy, J.C.; Perales, M.-A.; Kamboj, M.; van den Brink, M.R.M.; Vardhana, S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022, 55, 1779–1798. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Liu, D.; Liu, M.; Zhou, F.; Li, G.; Chen, Z.; Zhang, Z.; You, H.; Wu, M.; Zheng, Q.; et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020, 10, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Goel, S.; Kabarriti, R.; Cole, D.; Goldfinger, M.; Acuna-Villaorduna, A.; Pradhan, K.; Thota, R.; Reissman, S.; Sparano, J.A.; et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020, 10, 935–941. [Google Scholar] [CrossRef]
- García-Suárez, J.; de la Cruz, J.; Cedillo, Á.; Llamas, P.; Duarte, R.; Jiménez-Yuste, V.; Hernández-Rivas, J.Á.; Gil-Manso, R.; Kwon, M.; Sánchez-Godoy, P.; et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: Lessons from a large population-based registry study. J. Hematol. Oncol. 2020, 13, 133. [Google Scholar] [CrossRef]
- Shah, G.L.; DeWolf, S.; Lee, Y.J.; Tamari, R.; Dahi, P.B.; Lavery, J.A.; Ruiz, J.; Devlin, S.M.; Cho, C.; Peled, J.U.; et al. Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation. J. Clin. Investig. 2020, 130, 6656–6667. [Google Scholar] [CrossRef]
- Passamonti, F.; Cattaneo, C.; Arcaini, L.; Bruna, R.; Cavo, M.; Merli, F.; Angelucci, E.; Krampera, M.; Cairoli, R.; Della Porta, M.G.; et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: A retrospective, multicentre, cohort study. Lancet Haematol. 2020, 7, e737–e745. [Google Scholar] [CrossRef]
- Piñana, J.L.; Martino, R.; García-García, I.; Parody, R.; Morales, M.D.; Benzo, G.; Gómez-Catalan, I.; Coll, R.; De La Fuente, I.; Luna, A.; et al. Risk factors and outcome of COVID-19 in patients with hematological malignancies. Exp. Hematol. Oncol. 2020, 9, 21. [Google Scholar] [CrossRef]
- Warner, J.L.; Rubinstein, S.; Grivas, P.; Choueiri, T.K.; Kuderer, N.M.; Shah, D.; Rivera, D.R.; Gupta, S.; Bilen, M.A.; Halfdanarson, T.R.; et al. Clinical impact of COVID-19 on patients with cancer: Data from the COVID-19 and Cancer Consortium (CCC19). J. Clin. Oncol. 2020, 38, LBA110. [Google Scholar] [CrossRef]
- Lee, L.Y.; Cazier, J.-B.; Angelis, V.; Arnold, R.; Bisht, V.; Campton, N.A.; Chackathayil, J.; Cheng, V.W.; Curley, H.M.; Fittall, M.W.; et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet 2020, 395, 1919–1926. [Google Scholar] [CrossRef]
- Wood, W.A.; Neuberg, D.S.; Thompson, J.C.; Tallman, M.S.; Sekeres, M.A.; Sehn, L.H.; Anderson, K.C.; Goldberg, A.D.; Pennell, N.A.; Niemeyer, C.M.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A report from the ASH Research Collaborative Data Hub. Blood Adv. 2020, 4, 5966–5975. [Google Scholar] [CrossRef]
- Marchesi, F.; Salmanton-García, J.; Emarah, Z.; Piukovics, K.; Nucci, M.; López-García, A.; Ráčil, Z.; Farina, F.; Popova, M.; Zompi, S.; et al. COVID-19 in adult acute myeloid leukemia patients: A long-term follow-up study from the European Hematology Association survey (EPICOVIDEHA). Haematologica 2023, 108, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Duléry, R.; Lamure, S.; Delord, M.; Di Blasi, R.; Chauchet, A.; Hueso, T.; Rossi, C.; Drenou, B.; Deau Fischer, B.; Soussain, C.; et al. Prolonged in-hospital stay and higher mortality after COVID-19 among patients with non-Hodgkin lymphoma treated with B-cell depleting immunotherapy. Am. J. Hematol. 2021, 96, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.; de la Camara, R.; Mikulska, M.; Tridello, G.; Aguado, B.; Zahrani, M.A.; Apperley, J.; Berceanu, A.; Bofarull, R.M.; Calbacho, M.; et al. COVID-19 and stem cell transplantation; results from an EBMT and GETH multicenter prospective survey. Leukemia 2021, 35, 2885–2894. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bhatt, N.S.; St Martin, A.; Abid, M.B.; Bloomquist, J.; Chemaly, R.F.; Dandoy, C.; Gauthier, J.; Gowda, L.; Perales, M.-A.; et al. Clinical characteristics and outcomes of COVID-19 in haematopoietic stem-cell transplantation recipients: An observational cohort study. Lancet Haematol. 2021, 8, e185–e193. [Google Scholar] [CrossRef]
- Rubinstein, S.M.; Bhutani, D.; Lynch, R.C.; Hsu, C.-Y.; Shyr, Y.; Advani, S.; Mesa, R.A.; Mishra, S.; Mundt, D.P.; Shah, D.P.; et al. Patients Recently Treated for B-lymphoid Malignancies Show Increased Risk of Severe COVID-19. Blood Cancer Discov. 2022, 3, 181–193. [Google Scholar] [CrossRef]
- Lee, C.Y.; Shah, M.K.; Hoyos, D.; Solovyov, A.; Douglas, M.; Taur, Y.; Maslak, P.; Babady, N.E.; Greenbaum, B.; Kamboj, M.; et al. Prolonged SARS-CoV-2 Infection in Patients with Lymphoid Malignancies. Cancer Discov. 2022, 12, 62–73. [Google Scholar] [CrossRef]
- Lund, L.C.; Rahbek, M.T.; Brown, P.; Obel, N.; Hallas, J.; Frederiksen, H. Mortality and clinical outcomes following SARS-CoV-2 infection among individuals with haematological malignancies: A Danish population-based cohort study. Eur. J. Haematol. 2023, 111, 946–950. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, Q.; Lu, J.; Sun, Y.; Zhao, X.; Yang, S.; Tang, F.; Yu, W.; Zhao, T.; Liu, X.; et al. COVID-19 infection in patients with haematological malignancies: A single-centre survey in the latest Omicron wave in China. Br. J. Haematol. 2023, 202, 31–39. [Google Scholar] [CrossRef]
- Mikulska, M.; Testi, D.; Russo, C.; Balletto, E.; Sepulcri, C.; Bussini, L.; Dentone, C.; Magne, F.; Policarpo, S.; Campoli, C.; et al. Outcome of early treatment of SARS-CoV-2 infection in patients with haematological disorders. Br. J. Haematol. 2023, 201, 628–639. [Google Scholar] [CrossRef]
- Feuth, E.; Nieminen, V.; Palomäki, A.; Ranti, J.; Sucksdorff, M.; Finnilä, T.; Oksi, J.; Vuorinen, T.; Feuth, T. Prolonged viral pneumonia and high mortality in COVID-19 patients on anti-CD20 monoclonal antibody therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 723–734. [Google Scholar] [CrossRef]
- Carrara, E.; Razzaboni, E.; Azzini, A.M.; De Rui, M.E.; Pinho Guedes, M.N.; Gorska, A.; Giannella, M.; Bussini, L.; Bartoletti, M.; Arbizzani, F.; et al. Predictors of clinical evolution of SARS-CoV-2 infection in hematological patients: A systematic review and meta-analysis. Hematol. Oncol. 2023, 41, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Randi, B.A.; Higashino, H.R.; Silva, V.P.d.; Xavier, E.M.; Rocha, V.; Costa, S.F. COVID-19 in hematopoietic stem-cell transplant recipients: A systematic review and meta-analysis of clinical characteristics and outcomes. Rev. Med. Virol. 2023, 33, e2483. [Google Scholar] [CrossRef] [PubMed]
- Fathizadeh, H.; Afshar, S.; Masoudi, M.R.; Gholizadeh, P.; Asgharzadeh, M.; Ganbarov, K.; Köse, Ş.; Yousefi, M.; Kafil, H.S. SARS-CoV-2 (COVID-19) vaccines structure, mechanisms and effectiveness: A review. Int. J. Biol. Macromol. 2021, 188, 740–750. [Google Scholar] [CrossRef]
- Shoham, S.; Focosi, D.; Franchini, M.; Atamna, A. Novel approaches for preventing COVID-19 infection in immunocompromised patients with hematologic malignancies. Expert Rev. Hematol. 2024, 18, 39–46. [Google Scholar] [CrossRef]
- Buttiron Webber, T.; Provinciali, N.; Musso, M.; Ugolini, M.; Boitano, M.; Clavarezza, M.; D’Amico, M.; Defferrari, C.; Gozza, A.; Briata, I.M.; et al. Predictors of poor seroconversion and adverse events to SARS-CoV-2 mRNA BNT162b2 vaccine in cancer patients on active treatment. Eur. J. Cancer 2021, 159, 105–112. [Google Scholar] [CrossRef]
- Amatu, A.; Pani, A.; Patelli, G.; Gagliardi, O.M.; Loparco, M.; Piscazzi, D.; Cassingena, A.; Tosi, F.; Ghezzi, S.; Campisi, D.; et al. Impaired seroconversion after SARS-CoV-2 mRNA vaccines in patients with solid tumours receiving anticancer treatment. Eur. J. Cancer 2022, 163, 16–25. [Google Scholar] [CrossRef]
- Guo, W.; Zheng, Y.; Feng, S. Omicron related COVID-19 prevention and treatment measures for patients with hematological malignancy and strategies for modifying hematologic treatment regimes. Front. Cell. Infect. Microbiol. 2023, 13, 1207225. [Google Scholar] [CrossRef]
- Riccardi, N.; Falcone, M.; Yahav, D. Vaccination for SARS-CoV-2 in Hematological Patients. Acta Haematol. 2022, 145, 257–266. [Google Scholar] [CrossRef]
- Greenberger, L.M.; Saltzman, L.A.; Senefeld, J.W.; Johnson, P.W.; DeGennaro, L.J.; Nichols, G.L. Anti-spike antibody response to SARS-CoV-2 booster vaccination in patients with B cell-derived hematologic malignancies. Cancer Cell 2021, 39, 1297–1299. [Google Scholar] [CrossRef]
- Herishanu, Y.; Avivi, I.; Aharon, A.; Shefer, G.; Levi, S.; Bronstein, Y.; Morales, M.; Ziv, T.; Shorer Arbel, Y.; Scarfò, L.; et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood 2021, 137, 3165–3173. [Google Scholar] [CrossRef]
- Ghione, P.; Gu, J.J.; Attwood, K.; Torka, P.; Goel, S.; Sundaram, S.; Mavis, C.; Johnson, M.; Thomas, R.; McWhite, K.; et al. Impaired humoral responses to COVID-19 vaccination in patients with lymphoma receiving B-cell-directed therapies. Blood 2021, 138, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, F.; Pimpinelli, F.; Giannarelli, D.; Ronchetti, L.; Papa, E.; Falcucci, P.; Pontone, M.; Di Domenico, E.G.; di Martino, S.; Laquintana, V.; et al. Impact of anti-CD20 monoclonal antibodies on serologic response to BNT162b2 vaccine in B-cell Non-Hodgkin’s lymphomas. Leukemia 2022, 36, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.; Luttwak, E.; Balaban, R.; Shefer, G.; Morales, M.M.; Aharon, A.; Tabib, Y.; Cohen, Y.C.; Benyamini, N.; Beyar-Katz, O.; et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with B-cell non-Hodgkin lymphoma. Blood Adv. 2021, 5, 3053–3061. [Google Scholar] [CrossRef] [PubMed]
- Gurion, R.; Rozovski, U.; Itchaki, G.; Gafter-Gvili, A.; Leibovitch, C.; Raanani, P.; Ben-Zvi, H.; Szwarcwort, M.; Taylor-Abigadol, M.; Dann, E.J.; et al. Humoral serological response to the BNT162b2 vaccine is abrogated in lymphoma patients within the first 12 months following treatment with anti-CD2O antibodies. Haematologica 2022, 107, 715–720. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; Blennow, O.; Gomes da Silva, M.; Glenthøj, A.; van Doesum, J.; Bilgin, Y.M.; López-García, A.; Itri, F.; et al. Breakthrough COVID-19 in vaccinated patients with hematologic malignancies: Results from the EPICOVIDEHA survey. Blood 2022, 140, 2773–2787. [Google Scholar] [CrossRef]
- Wang, L.; Kaelber, D.C.; Xu, R.; Berger, N.A. COVID-19 breakthrough infections, hospitalizations and mortality in fully vaccinated patients with hematologic malignancies: A clarion call for maintaining mitigation and ramping-up research. Blood Rev. 2022, 54, 100931. [Google Scholar] [CrossRef]
- Mittelman, M.; Magen, O.; Barda, N.; Dagan, N.; Oster, H.S.; Leader, A.; Balicer, R. Effectiveness of the BNT162b2mRNA COVID-19 vaccine in patients with hematological neoplasms in a nationwide mass vaccination setting. Blood 2022, 139, 1439–1451. [Google Scholar] [CrossRef]
- Re, D.; Seitz-Polski, B.; Brglez, V.; Carles, M.; Graça, D.; Benzaken, S.; Liguori, S.; Zahreddine, K.; Delforge, M.; Bailly-Maitre, B.; et al. Humoral and cellular responses after a third dose of SARS-CoV-2 BNT162b2 vaccine in patients with lymphoid malignancies. Nat. Commun. 2022, 13, 864. [Google Scholar] [CrossRef]
- Shapiro, L.C.; Thakkar, A.; Campbell, S.T.; Forest, S.K.; Pradhan, K.; Gonzalez-Lugo, J.D.; Quinn, R.; Bhagat, T.D.; Choudhary, G.S.; McCort, M.; et al. Efficacy of booster doses in augmenting waning immune responses to COVID-19 vaccine in patients with cancer. Cancer Cell 2022, 40, 3–5. [Google Scholar] [CrossRef]
- Jiménez, M.; Roldán, E.; Fernández-Naval, C.; Villacampa, G.; Martinez-Gallo, M.; Medina-Gil, D.; Peralta-Garzón, S.; Pujadas, G.; Hernández, C.; Pagès, C.; et al. Cellular and humoral immunogenicity of the mRNA-1273 SARS-CoV-2 vaccine in patients with hematologic malignancies. Blood Adv. 2022, 6, 774–784. [Google Scholar] [CrossRef]
- Haggenburg, S.; Hofsink, Q.; Lissenberg-Witte, B.I.; Broers, A.E.C.; van Doesum, J.A.; van Binnendijk, R.S.; Hartog, G.d.; Bhoekhan, M.S.; Haverkate, N.J.E.; Burger, J.A.; et al. Three-dose mRNA-1273 vaccination schedule: Sufficient antibody response in majority of immunocompromised hematology patients. medRxiv 2022. [Google Scholar] [CrossRef]
- Corradini, P.; Agrati, C.; Apolone, G.; Mantovani, A.; Giannarelli, D.; Marasco, V.; Bordoni, V.; Sacchi, A.; Matusali, G.; Salvarani, C.; et al. Humoral and T-Cell Immune Response After 3 Doses of Messenger RNA Severe Acute Respiratory Syndrome Coronavirus 2 Vaccines in Fragile Patients: The Italian VAX4FRAIL Study. Clin. Infect. Dis. 2023, 76, e426–e438. [Google Scholar] [CrossRef] [PubMed]
- Rescigno, M.; Agrati, C.; Salvarani, C.; Giannarelli, D.; Costantini, M.; Mantovani, A.; Massafra, R.; Zinzani, P.L.; Morrone, A.; Notari, S.; et al. Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters. Front. Immunol. 2023, 14, 1104124. [Google Scholar] [CrossRef] [PubMed]
- Haidar, G.; Hodges, J.C.; Bilderback, A.; Lukanski, A.; Linstrum, K.; Postol, B.; Troyan, R.; Wisniewski, M.K.; Coughenour, L.; Heaps, A.; et al. Prospective Assessment of Humoral and Cellular Immune Responses to a Third COVID-19 mRNA Vaccine Dose Among Immunocompromised Individuals. J. Infect. Dis. 2023, 229, 1328–1340. [Google Scholar] [CrossRef]
- Anand, S.T.; Vo, A.D.; La, J.; Do, N.V.; Fillmore, N.R.; Brophy, M.; Branch-Elliman, W.; Monach, P.A. Severe COVID-19 in Vaccinated Adults With Hematologic Cancers in the Veterans Health Administration. JAMA Netw. Open 2024, 7, e240288. [Google Scholar] [CrossRef]
- Bhella, S.; Wilkin, A.M.; Hueniken, K.; Vijenthira, A.; Sebag, M.; Wang, P.; Hicks, L.K.; Hay, A.E.; Assouline, S.; Fraser, G.; et al. COVID-19 vaccine immunogenicity and safety surrounding fourth and subsequent vaccine doses in patients with hematologic malignancies. Vaccine 2024, 42, 126074. [Google Scholar] [CrossRef]
- Mittal, A.; Solera, J.T.; Ferreira, V.H.; Kothari, S.; Kimura, M.; Pasic, I.; Mattsson, J.I.; Humar, A.; Kulasingam, V.; Ierullo, M.; et al. Immunogenicity and Safety of Booster SARS-CoV-2 mRNA Vaccine Dose in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Transplant. Cell. Ther. 2023, 29, 706.e701–706.e707. [Google Scholar] [CrossRef]
- Abid, M.B.; Rubin, M.; Szabo, A.; Longo, W.; Fenske, T.S.; McCoy, C.; Lorge, A.; Abedin, S.; D’Souza, A.; Dhakal, B.; et al. Efficacy of Multiple SARS-CoV-2 Vaccine Doses in Patients with B Cell Hematologic Malignancies Receiving Chimeric Antigen Receptor T Cell Therapy: A Contemporary Cohort Analysis. Transplant. Cell. Ther. 2024, 30, 285–297. [Google Scholar] [CrossRef]
- Ollila, T.A.; Masel, R.H.; Reagan, J.L.; Lu, S.; Rogers, R.D.; Paiva, K.J.; Taher, R.; Burguera-Couce, E.; Zayac, A.S.; Yakirevich, I.; et al. Seroconversion and outcomes after initial and booster COVID-19 vaccination in adults with hematologic malignancies. Cancer 2022, 128, 3319–3329. [Google Scholar] [CrossRef]
- Noori, M.; Azizi, S.; Abbasi Varaki, F.; Nejadghaderi, S.A.; Bashash, D. A systematic review and meta-analysis of immune response against first and second doses of SARS-CoV-2 vaccines in adult patients with hematological malignancies. Int. Immunopharmacol. 2022, 110, 109046. [Google Scholar] [CrossRef]
- Piechotta, V.; Mellinghoff, S.C.; Hirsch, C.; Brinkmann, A.; Iannizzi, C.; Kreuzberger, N.; Adams, A.; Monsef, I.; Stemler, J.; Cornely, O.A.; et al. Effectiveness, immunogenicity, and safety of COVID-19 vaccines for individuals with hematological malignancies: A systematic review. Blood Cancer J. 2022, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Guven, D.C.; Sahin, T.K.; Akın, S.; Uckun, F.M. Impact of Therapy in Patients with Hematologic Malignancies on Seroconversion Rates After SARS-CoV-2 Vaccination. Oncologist 2022, 27, e357–e361. [Google Scholar] [CrossRef] [PubMed]
- Gong, I.Y.; Vijenthira, A.; Betschel, S.D.; Hicks, L.K.; Cheung, M.C. COVID-19 vaccine response in patients with hematologic malignancy: A systematic review and meta-analysis. Am. J. Hematol. 2022, 97, E132–E135. [Google Scholar] [CrossRef]
- Rinaldi, I.; Pratama, S.; Wiyono, L.; Tandaju, J.R.; Wardhana, I.L.; Winston, K. Efficacy and safety profile of COVID-19 mRNA vaccine in patients with hematological malignancies: Systematic review and meta-analysis. Front. Oncol. 2022, 12, 951215. [Google Scholar] [CrossRef]
- Rubin, M.; Suelzer, E.; Ulschmid, C.; Thapa, B.; Szabo, A.; Abid, M.B. Efficacy of SARS-CoV-2 Vaccine Doses in Allogeneic Hemopoietic Stem Cell Recipients: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2024, 25, 393–399. [Google Scholar] [CrossRef]
- Mai, A.S.; Lee, A.R.Y.B.; Tay, R.Y.K.; Shapiro, L.; Thakkar, A.; Halmos, B.; Grinshpun, A.; Herishanu, Y.; Benjamini, O.; Tadmor, T.; et al. Booster doses of COVID-19 vaccines for patients with haematological and solid cancer: A systematic review and individual patient data meta-analysis. Eur. J. Cancer 2022, 172, 65–75. [Google Scholar] [CrossRef]
- Al Hajji, Y.; Taylor, H.; Starkey, T.; Lee, L.Y.W.; Tilby, M. Antibody response to a third booster dose of SARS-CoV-2 vaccination in adults with haematological and solid cancer: A systematic review. Br. J. Cancer 2022, 127, 1827–1836. [Google Scholar] [CrossRef]
- Cesaro, S.; Mikulska, M.; Hirsch, H.H.; Styczynski, J.; Meylan, S.; Cordonnier, C.; Navarro, D.; von Lilienfeld-Toal, M.; Mehra, V.; Marchesi, F.; et al. Update of recommendations for the management of COVID-19 in patients with haematological malignancies, haematopoietic cell transplantation and CAR T therapy, from the 2022 European Conference on Infections in Leukaemia (ECIL 9). Leukemia 2023, 37, 1933–1938. [Google Scholar] [CrossRef]
- Kamboj, M.; Bohlke, K.; Baptiste, D.M.; Dunleavy, K.; Fueger, A.; Jones, L.; Kelkar, A.H.; Law, L.Y.; LeFebvre, K.B.; Ljungman, P.; et al. Vaccination of Adults With Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 1699–1721. [Google Scholar] [CrossRef]
First Author [ref.], Year | Country, Study Period 1 | Study Design | Population (n) | Hematologic Malignancy | Main Findings |
---|---|---|---|---|---|
Dai [34], 2020 | China, from 2020-01 to 2020-02 | Cohort study | 105 with cancer (8 with HM) | NA | Among cancer patients, those with HM had the highest death rate (33.3%) and ICU admission rate (44.4%). |
Mehta [35], 2020 | USA, from 2020-03 to 2020-04 | Cohort study | 218 with cancer (54 with HM) | 37% Ly, 10% AL, 24% MM, 10% MDS, 13% MPN, 6% CLL | Mortality was higher in HM patients than in those with solid malignancies (37% versus 25%). |
Garcia-Suarez [36], 2020 | Spain, from 2020-02 to 2020-05 | Population-based registry | 697 | 27% Ly, 9% AL, 20% MM, 16% CLL, 9% MPN, 11% MDS | A 33% mortality rate was observed. Age > 60 years, > 2 comorbidities, and antineoplastic treatment with monoclonal antibodies were independent prognostic factors for mortality. |
Shah [37], 2020 | USA, from 2002-03 to 2020-05 | Retrospective study | 77 | 31% Ly, 36% MM, 5% MDS; 45.5% allo-HSCT; 48% auto-HSCT; 6.5% CAR T | Forty-four percent of patients were hospitalized. Overall survival at 30 days was 78%. The presence of comorbidities (>2) and of an active hematologic malignancy predicted increased COVID-19 severity. |
Passamonti [38], 2020 | Italy, from 2020-02 to 2020-05 | Retrospective study | 536 | 44% Ly, 13% AL, 20% MM, 15% MPN, 8% MDS | A higher SMR (2.04) was recorded in HM patients compared with the Italian general population with COVID-19. Older age, progressive disease status, diagnosis of AL or aggressive Ly, and severe or critical COVID-19 were associated with worse overall survival. |
Piñana [39], 2020 | Spain, from 2020-03 to 2020-05 | Retrospective study | 367 | 28% Ly, 24% AL, 16% MM, 10% CLL, 11% MPN, 5% MDS | The overall mortality rate was 29%. Older age (>70 years), advanced HM, and neutropenia were independently associated with increased overall mortality. |
Kuderer [40], 2020 | USA, from 2020-03 to 2020-04 | Cohort study (registry) | 928 with cancer (204 with HM) | 47% Ly, 9% AL, 27% MM | Among cancer patients, patients with HM had an increased risk of severe COVID-19. |
Lee [41], 2020 | UK, from 2020-03 to 2020-05 | Cohort study (registry) | 1044 with cancer (224 with HM) | NA | HM patients had more severe COVID-19 compared to those with solid tumors. AL was associated with a higher mortality rate. |
Wood [42], 2020 | USA-Canada from 2020-04 to 2020-07 | Cohort study (registry) | 250 | 31% Ly, 33% AL, 12% CLL, 16% MM; 10% MPN | Mortality rates of 28% and 42% were observed in all hospitalized COVID-19 HM patients. |
Pagano [43], 2021 | International, from 2020-03 to 2020-12 | Web-based registry | 3801 | 33% Ly, 18% AL, 18% MM, 4% CLL, 11% MPN, 7% MDS | The rate of hospitalization was 74%. The overall mortality rate was 31%. The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (40.7% versus 24.8%, p < 0.0001). |
Dulery [44], 2021 | France, from 2020-03 to 2020-04 | Retrospective study | 111 | 100% Ly | Recent anti-CD20 therapy, older age (>70 years), and relapsed/refractory Ly were associated with prolonged LOS and higher risk of death. |
Ljungman [45], 2021 | Europe, from 2020-02 to 2020-07 | Retrospective study | 382 | 146 auto-HSCT, 236 allo-HSCT | Older age and a moderate/high immunodeficiency index increased the mortality risk. |
Sharma [46], 2021 | USA, from 2020-03 to 2020-08 | Observational cohort study | 318 | 134 auto-HSCT, 184 allo-HSCT | Age older than 50 years and male sex represented mortality risk factors among allo-HSCT recipients. |
Rubinstein [47], 2022 | USA, from 2020-03 to 2021-06 | Retrospective study | 8759 | 100% Ly (B-lymphoid malignancy) | A 55% hospitalization rate was recorded. The mortality rate was 13%. Recent therapy (<12 months) for B-lymphoid malignancy was an independent risk factor for COVID-19 severity. |
Lee [48], 2022 | USA, from 2020-03 to 2021-02 | Retrospective study | 382 | 100% Ly (with persistent COVID-19 infection) | A 22% mortality rate was observed in hospitalized patients. Cardiovascular disease, active treatment, and CAR T-cell therapy were independently associated with mortality. |
Lund [49], 2023 | Denmark, from 2020-02 to 2023-04 | Cohort study | 7154 | 43% Ly, 12% AL, 15% MM, 12% CLL, 18% MPN | The rate of SARS-CoV-2 vaccinated patients (first dose) was 89%. A CFR of 3.1% was detected. The highest CFR (6.2%) was observed in AL patients. The rate of hospitalization was 21.7%. |
Zhu [50], 2023 | China, 2022-12 | Retrospective study | 412 | 13% Ly, 38% AL, 22% MM, 24.5% MPN, 1.5% MDS | Patients with advanced malignancies had a higher mortality rate compared with those with stable malignancy (10.5% versus 0%, p < 0.001). |
Mikulska [51]. 2023 | Italy, from 2021-03 to 2022-07 | Retrospective study | 328 | 38% Ly, 20% AL, 24% MM, 10% CLL, 3% MDS | COVID-19-associated mortality was 3.4% (21% in pre-Omicron and 2.3% during the Omicron period). Independent predictors of mortality were older age, AL diagnosis, hematological malignancy (AL or MDS), and the pre-omicron period. |
Feuth [52], 2024 | Finland, from 2020-03 to 2023-03 | Retrospective study | 40 | 100% Ly (patients on anti-CD20 monoclonal antibody therapy) | In this study, 59.5% of patients were hospitalized for COVID-19. COVID-19-related mortality was 17.5%. Anti-CD20 monoclonal antibody therapy was associated with a high hospitalization and mortality risk in Ly patients. |
First Author [ref.], Year | Country, Study Period 1 | Study Design/Vaccine Type | Population (n) | Hematologic Malignancy | Main Conclusions |
---|---|---|---|---|---|
Pagano [67], 2022 | International, from 2021-01 to 2022-03 | Web-based registry/mRNA (89%), vector-based (9%), inactivated (2%) | 1548 | 40% Ly, 13% AL, 18% MM, 6% MDS, 14% CLL, 9% MPN | Although COVID-19 mortality was significantly lower than in the prevaccination era, it remained considerably high. The death rate was lower in patients who received anti-spike monoclonal antibodies alone or in combination with antivirals. |
Wang [68], 2022 | USA, from 2020-12 to 2021-10 | Retrospective cohort study/ mRNA (99%), vector-based (1%) | 5956 | 53% Ly, 13% AL, 20% MM, 17% CLL, 5% MPN | Among the fully vaccinated population, HM patients had a significantly higher risk for breakthrough infections compared to patients without cancer, which drove hospitalizations and mortality. |
Mittelman [69], 2022 | USA, from 2020-12 to 2021-02 | Case-control study/mRNA BNT162b2 | 32,516 | NA | Vaccinated HM patients, in particular those receiving treatment, suffer from adverse COVID-19 outcomes more than vaccinated individuals with intact immune systems. |
Re [70], 2022 | France, | Prospective cohort study/mRNA BNT162b2 | 43 | 33% CLL, 32% Ly, 35% MM | The results of the study support the third vaccine dose in patients with lymphoid malignancies, although the proportion of patients still seronegative after the full vaccination cycle (42%) did not respond to the booster dose. |
Shapiro [71], 2022 | USA, from 2021-08 to 2021-12 | Cohort study/mRNA (95%), vector-based (5%) | 57 | 16% MyM, 61% LyM, 25% MM | An additional (booster) vaccine dose increases the response rate (56%) in HM patients. Patients with lymphoid malignancies, particularly those receiving anti-CD20 therapies, had the lowest seroconversion rate. |
Haggenburg [73], 2022 | Holland, 2022 | Prospective observational cohort study | 584 | 17% Ly, 27% MM, 13% CLL, 18% MPN, 15% HSCT | The primary COVID-19 vaccination schedule for immunocompromised patients with HM should be supplemented with a delayed third vaccination. |
Resigno [75], 2023 | Italy, from 2021-10 to 2022-06 | Cohort study/ mRNA | 71 | NA | The fourth vaccine dose increased the levels of neutralizing anti-SARS-CoV-2 antibodies in all patients with the exception of those undergoing B-cell targeted therapies. |
Haidar [76], 2024 | USA, from 2021-04 to 2021-07 | Retrospective cohort study/ mRNA | 80 | 28% Ly, 1% AL, 14% MM, 36% CLL, 5% MPN, 3% MDS | HM patients had suboptimal responses to the third COVID-19 mRNA vaccine dose. |
Anand [77], 2024 | USA, from 2020-01 to 2023-04 | Case-control study/ mRNA (95%) vector-based (5%) | 6122 | 61% Ly, 3% AL, 8% MDS, 20% CLL, 22% MPN | HM patients remain at high risk for severe COVID-19 in the event of infection with SARS-CoV-2 after vaccination. This risk was increased by active treatment with antineoplastic or immunosuppressive drugs and was reduced by booster vaccine doses. |
Bhella [78], 2024 | Canada, from 2021-08 to 2022-06 | Prospective observational study /mRNA | 372 | 29% Ly, 10% CLL, 23% MM, 10% AL, 10% MPN, 25% HSCT | Humoral immune response improved with subsequent doses (3rd and 4th) of COVID-19 vaccines. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchini, M.; Maggi, F.; Focosi, D. COVID-19 Vaccination in Patients with Hematological Malignances. Vaccines 2025, 13, 465. https://doi.org/10.3390/vaccines13050465
Franchini M, Maggi F, Focosi D. COVID-19 Vaccination in Patients with Hematological Malignances. Vaccines. 2025; 13(5):465. https://doi.org/10.3390/vaccines13050465
Chicago/Turabian StyleFranchini, Massimo, Fabrizio Maggi, and Daniele Focosi. 2025. "COVID-19 Vaccination in Patients with Hematological Malignances" Vaccines 13, no. 5: 465. https://doi.org/10.3390/vaccines13050465
APA StyleFranchini, M., Maggi, F., & Focosi, D. (2025). COVID-19 Vaccination in Patients with Hematological Malignances. Vaccines, 13(5), 465. https://doi.org/10.3390/vaccines13050465