Effectiveness of a Bivalent Recombinant Vaccine on the Production of Neutralizing Antibodies Against BoNT/C, BoNT/D, BoNT/CD e BoNT/DC in Bovines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recombinant Vaccine
2.2. Experimental Groups
2.3. Enzyme Linked Immuno Assays
2.4. Titration of Neutralizing Antibodies
2.5. Statistical Analysis
2.6. Ethics Statement
3. Results
3.1. Evaluation of Anti-BoNT/C and Anti-BoNT/D IgG
3.2. Evaluation of Neutralizing Antibodies in Calves Vaccinated with Bivalent Recombinant Vaccine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BoNT | Botulinum neurotoxin |
BoNT/C | Botulinum neurotoxin serotype C |
BoNT/CD | Botulinum neurotoxin serotype CD |
BoNT/DC | Botulinum neurotoxin serotype DC |
BoNT/D | Botulinum neurotoxin serotype D |
BoNT/A | Botulinum neurotoxin serotype A |
BoNT/B | Botulinum neurotoxin serotype B |
BoNT/E | Botulinum neurotoxin serotype E |
BoNT/F | Botulinum neurotoxin serotype F |
BoNT/G | Botulinum neurotoxin serotype G |
Hc | Heavy chain |
Lc | Light chain |
HcBoNT/C | Heavy chain of Botulinum neurotoxin serotype C |
HcBoNT/D | Heavy chain of Botulinum neurotoxin serotype D |
IU | International Units |
EU | ELISA Units |
References
- Soares, M.C.; Gaspar, A.O.; Brumatti, R.C.; Gomes, D.C.; Neves, D.A.; Alcântara, L.O.B.; Leal, P.V.; Lemos, R.A. Economic impact of an outbreak of botulism in a cattle feedlot. Pesqui. Veterinária Bras. 2018, 38, 1365–1370. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation) (Text with EEA relevance). 2017, pp. 1–163. Available online: https://eur-lex.europa.eu/eli/reg/2017/625/2022-01-28 (accessed on 26 February 2025).
- Bano, L.; Drigo, I.; Tonon, E.; Berto, G.; Tavella, A.; Woudstra, C.; Capello, K.; Agnoletti, F. Evidence for a natural humoral response in dairy cattle affected by persistent botulism sustained by non-chimeric type C strains. Anaerobe 2015, 36, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M. Public Health Risk Associated with Botulism as Foodborne Zoonoses. Toxins 2019, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Myllykoski, J.; Lindstrøm, M.; Keto-Timonen, R.; Søderholm, H.; Jakala, J.; Kallio, H.; Sukura, A.; Korkeala, H. Type C bovine botulism outbreak due to carcass contaminated non-acidified silage. Epidemiol. Infect. 2009, 137, 284–293. [Google Scholar] [CrossRef]
- Maréchal, C.L.; Hulin, O.; Macé, S.; Chuzeville, C.; Rouxel, S.; Poëzevara, T.; Mazuet, C.; Pozet, F.; Sellal, E.; Martin, L.; et al. A case report of a botulism outbreak in beef cattle due to the contamination of wheat by a roaming cat carcass: From the suspicion to the management of the outbreak. Animals 2019, 9, 1025. [Google Scholar] [CrossRef]
- Galey, F.D.; Terra, R.; Walker, R.; Adaska, J.; Etchebarne, M.A.; Puschner, B.; Fisher, E.; Whitlock, R.H.; Rocke, T.; Willoughby, D.; et al. Type C botulism in dairy cattle from feed contaminated with a dead cat. J. Vet. Diagn. Investig. 2000, 12, 204–209. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Fabris, F.; Montecucco, C. Botulinum Neurotoxins: Mechanism of Action. Handb. Exp. Pharmacol. 2021, 263, 35–47. [Google Scholar] [CrossRef]
- Peck, M.; Smith, T.; Anniballi, F.; Austin, J.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Poulain, B.; Popoff, M. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins 2019, 11, 34. [Google Scholar] [CrossRef]
- Gregg, B.M.; Matsumura, T.; Wentz, T.G.; Tepp, W.H.; Bradshaw, M.; Stenmark, P.; Johnson, E.A.; Fujinaga, Y.; Pellett, S. Botulinum neurotoxin X lacks potency in mice and in human neurons. MBio 2024, 15, e0310623. [Google Scholar] [CrossRef]
- Drigo, I.; Tonon, E.; Pascoletti, S.; Anniballi, F.; Kalb, S.R.; Bano, L. Detection of Active BoNT/C and D by EndoPep-MS Using MALDI Biotyper Instrument and Comparison with the Mouse Test Bioassay. Toxins 2020, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Bano, L.; Drigo, I.; Tonon, E.; Pascoletti, S.; Puiatti, C.; Anniballi, F.; Auricchio, B.; Lista, F.; Montecucco, C.; Agnoletti, F. Identification and characterization of Clostridium botulinum group III field strains by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 2017, 48, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, M.; Adams, J.; Doxey, A. Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett. 2015, 589, 342–348. [Google Scholar] [CrossRef]
- Maeda, R.; Mori, M.; Harada, S.; Izu, I.; Hirano, T.; Inoue, Y.; Yahiro, S.; Koyama, H. Emergence of Novel Type C Botulism Strain in Household Outbreak, Japan. Emerg. Infect. Dis. 2023, 29, 2175–2177. [Google Scholar] [CrossRef]
- Frye, E.A.; Egan, C.; Perry, M.J.; Crouch, E.E.; Burbank, K.E.; Kelly, K.M. Outbreak of botulism type A in dairy cows detected by MALDI-TOF mass spectrometry. J. Vet. Diagn. Investig. 2020, 32, 722–726. [Google Scholar] [CrossRef]
- Schocken-Iturrino, R.P.; Avila, F.A.; Berchielli, S.C.; Nader Filho, A. First case of type A botulism in zebu (Bos indicus). Vet. Rec. 1990, 126, 217–218. [Google Scholar]
- Divers, T.J.; Bartholomew, R.C.; Messick, J.B.; Whitlock, R.H.; Sweeney, R.W. Clostridium botulinum type B toxicosis in a herd of cattle and a group of mules. J. Am. Vet. Med. Assoc. 1986, 188, 383–386. [Google Scholar] [CrossRef]
- Abdel-Moein, K.A.; Hamza, D.A. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: An emerging public health hazard. Pathog. Glob. Health 2016, 110, 25–29. [Google Scholar] [CrossRef]
- Wilson, R.; Boley, M.; Corwin, B. Presumptive botulism in cattle associated with plastic-packaged hay. J. Vet. Diagn. Investig. 1995, 7, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Kelk, W.J.; Kerr, L.A.; Pringle, J.K.; Rohrbach, B.W.; Whitlock, R.H. Fatal Clostridium botulinum toxicosis in eleven Holstein cattle fed round bale barley haylage. J. Vet. Diagn. Investig. 2000, 12, 453–455. [Google Scholar] [CrossRef]
- Nakamura, K.; Kohda, T.; Umeda, K.; Yamamoto, H.; Mukamoto, M.; Kozaki, S. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Vet. Microbiol. 2010, 140, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Le Maréchal, C.; Denis, M.; Vanlemmens, L.; Jambou, L.; Delvallez, G.; Poezevara, T.; Abed-Zahar, M.; Diancourt, L.; Baudouard, M.-A.; Eveno, E.; et al. An outbreak of botulism on a pig farm due to the newly described Clostridium botulinum type C. Anaerobe 2024, 89, 102885. [Google Scholar] [CrossRef]
- Anniballi, F.; Fiore, A.; Löfström, C.; Skarin, H.; Auricchio, B.; Woudstra, C.; Bano, L.; Segerman, B.; Koene, M.; Båverud, V.; et al. Management of animal botulism outbreaks: From clinical suspicion to practical countermeasures to prevent or minimize outbreaks. Biosecurity Bioterrorism 2013, 11 (Suppl. S1), S191–S199. [Google Scholar] [CrossRef]
- Pandian, S.; Subramanian, M.; Vijayakumar, G.; Balasubramaniam, G.; Sukumar, K. Therapeutic management of botulism in dairy cattle. Vet. World 2015, 8, 1305–1309. [Google Scholar] [CrossRef]
- Steinman, A.; Galon, N.; Arazi, A.; Bar-Giora, Y.; Shpigel, N. Cattle immune response to botulinum type D toxoid: Results of a vaccination study. Vaccine 2007, 25, 7636–7640. [Google Scholar] [CrossRef]
- Moreira, C.; Ferreira, M.R.A.; da Cunha, C.E.P.; Donassolo, R.A.; Finger, P.F.; Moreira, G.M.S.G.; Otaka, D.Y.; De Sousa, L.A.; Barbosa, J.D.; Moreira, Â.N.; et al. Immunogenicity of a bivalent non-purified recombinant vaccine against botulism in cattle. Toxins 2018, 10, 381. [Google Scholar] [CrossRef]
- Cunha, C.E.P.; Moreira, G.M.S.G.; Salvarani, F.M.; Neves, M.S.; Lobato, F.C.F.; Dellagostin, O.A.; Conceição, F.R. Vaccination of cattle with a recombinant bivalent toxoid against botulism serotypes C and D. Vaccine 2014, 32, 214–216. [Google Scholar] [CrossRef]
- Gil, L.A.F.; da Cunha, C.E.P.; Moreira, G.M.S.G.; Salvarani, F.M.; Assis, R.A.; Lobato, F.C.F.; Mendonça, M.; Dellagostin, O.A.; Conceição, F.R. Production and evaluation of a recombinant chimeric vaccine against Clostridium botulinum neurotoxin types C and D. PLoS ONE 2013, 8, e69692. [Google Scholar] [CrossRef]
- Moreira, C.J.; da Cunha, C.E.P.; Moreira, G.M.S.G.; Mendonça, M.; Salvarani, F.M.; Moreira, Â.N.; Conceição, F.R. Protective potential of recombinant non-purified botulinum neurotoxin serotypes C and D. Anaerobe 2016, 40, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.P.; Smith, L.A. Development of vaccines for prevention of botulism. Biochimie 2000, 82, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Popoff, M.R. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins 2020, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Otaka, D.Y.; Barbosa, J.D.; de Souza, L.A.; Moreira, C.; Ferreira, M.R.A.; Donassolo, R.A.; Conceição, F.R.; Salvarani, F.M. Recombinant vaccine against botulism in buffaloes: Evaluation of the humoral immune response over 12 months. Anaerobe 2020, 63, 102201. [Google Scholar] [CrossRef]
- Stahl, C.; Unger, L.; Mazuet, C.; Popoff, M.; Straub, R.; Frey, J. Immune response of horses to vaccination with the recombinant Hc domain of botulinum neurotoxin types C and D. Vaccine 2009, 27, 5661–5666. [Google Scholar] [CrossRef]
- Huesler, I.M.; Mitchell, K.J.; Schwarzwald, C.C. Echocardiographic Assessment of Left Atrial Size and Function in Warmblood Horses: Reference Intervals, Allometric Scaling, and Agreement of Different Echocardiographic Variables. J. Vet. Intern. Med. 2016, 30, 1241–1252. [Google Scholar] [CrossRef]
- Hatheway, C.L.; Dang, C. Immunogenicity of the neurotoxins of Clostridium botulinum. In Therapy with Botulinum Toxin; Jankovic, J., Hallett, M., Eds.; Taylor & Francis: New York, NY, USA, 1994; pp. 93–107. [Google Scholar]
- Smith, T.J.; Lou, J.; Geren, I.N.; Forsyth, C.M.; Tsai, R.; LaPorte, S.L.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Smith, L.A.; et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect. Immun. 2005, 73, 5450–5457. [Google Scholar] [CrossRef]
- CNRB 31.013 rev.3. Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche Mediante Multiplex Real-Time PCR 2021:1–44. Available online: https://www.iss.it/documents/20126/8159535/Metodo+CNRB31.013.pdf/d8911198-2857-2a85-4430-fed9e64503cd?t=1674468738237 (accessed on 10 March 2025).
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Cid, R.; Bolívar, J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021, 11, 1072. [Google Scholar] [CrossRef]
- Steward, L.; Brin, M.F.; Brideau-Andersen, A. Novel Native and Engineered Botulinum Neurotoxins. In Botulinum Toxin Therapy; Handbook of Experimental Pharmacology; Springer: Cham, Switrzerland, 2021; Volume 263, pp. 63–89. [Google Scholar] [CrossRef]
- Ayyar, B.V.; Aoki, K.R.; Atassi, M.Z. The C-terminal heavy-chain domain of botulinum neurotoxin a is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions. Infect. Immun. 2015, 83, 1465–1476. [Google Scholar] [CrossRef]
- Liu, F.-J.; Shi, D.-Y.; Mao, Y.-Y.; Xiong, X.-H.; Lu, J.-S.; Pang, X.-B.; Dong, X.-J.; Yang, Z.-X.; Yu, Y.-Z. Immunological characterisation and immunoprotective efficacy of functional domain antigens of botulinum neurotoxin serotype A. Vaccine 2020, 38, 2978–2983. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.Y.; Chen, B.Y.; Mao, Y.Y.; Zhou, G.; Lu, J.S.; Yu, Y.Z.; Zhou, X.-W.; Sun, Z.-W. Development and evaluation of candidate subunit vaccine against botulinum neurotoxin serotype B. Hum. Vaccines Immunother. 2019, 15, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Sundeen, G.; Barbieri, J.T. Vaccines against Botulism. Toxins 2017, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.P.; Smith, T.J.; Smith, L.A.; Wright, P.M.; Guernieri, R.L.; Brown, J.L.; Skerry, J.C. Recombinant Botulinum Neurotoxin Hc Subunit (BoNT Hc) and Catalytically Inactive Clostridium botulinum Holoproteins (ciBoNT HPs) as Vaccine Candidates for the Prevention of Botulism. Toxins 2017, 9, 269. [Google Scholar] [CrossRef]
- Nakamura, K.; Kohda, T.; Shibata, Y.; Tsukamoto, K.; Arimitsu, H.; Hayashi, M.; Mukamoto, M.; Sasakawa, N.; Kozaki, S. Unique biological activity of botulinum D/C mosaic neurotoxin in murine species. Infect. Immun. 2012, 80, 2886–2893. [Google Scholar] [CrossRef]
- Moreira, C.; Ferreira, M.R.A.; Finger, P.F.; Magalhães, C.G.; Cunha, C.E.P.; Rodrigues, R.R.; Otaka, D.Y.; Galvão, C.C.; Salvarani, F.M.; Moreira, Â.N.; et al. Protective efficacy of recombinant bacterin vaccine against botulism in cattle. Vaccine 2020, 38, 2519–2526. [Google Scholar] [CrossRef]
- Meurens, F.; Carlin, F.; Federighi, M.; Filippitzi, M.-E.; Fournier, M.; Fravalo, P.; Ganière, J.-P.; Grisot, L.; Guillier, L.; Hilaire, D.; et al. Clostridium botulinum type C, D, C/D, and D/C: An update. Front. Microbiol. 2022, 13, 1099184. [Google Scholar] [CrossRef]
- Relun, A.; Dorso, L.; Douart, A.; Chartier, C.; Guatteo, R.; Mazuet, C.; Popoff, M.R.; Assié, S. A large outbreak of bovine botulism possibly linked to a massive contamination of grass silage by type D/C Clostridium botulinum spores on a farm with dairy and poultry operations. Epidemiol. Infect. 2017, 145, 3477–3485. [Google Scholar] [CrossRef]
- Pinna, L.; Coccollone, A.; Maxia, M.; Bano, L.; Scalfaro, C.; Mandas, D.; Liciardi, M. Botulism in Cattle: A Case Report of an Outbreak in Sardinia (Italy). Animals 2023, 13, 2435. [Google Scholar] [CrossRef]
- Salvarani, F.M.; Vieira, E.V. Clostridial Infections in Cattle: A Comprehensive Review with Emphasis on Current Data Gaps in Brazil. Animals 2024, 14, 2919. [Google Scholar] [CrossRef]
BoNT | Pre-V | Post-2nd | Post-3rd | p-Value | |||
---|---|---|---|---|---|---|---|
Mean * (IU/mL) | Std Dev | Mean (IU/mL) | Std Dev | Mean (IU/mL) | Std Dev | ||
BoNT/C | 0.02 | - | 3.456 | 2.194 | NT | / | <0.001 |
BoNT/D | 0.3125 | - | 5.088 | 3.468 | NT | / | <0.001 |
BoNT/CD | 0.03 | - | 0.209 | 0.193 | NT | / | 0.017 |
BoNT/DC | 0.625 | - | ND | / | 1.374 | 0.842 | 0.020 |
BoNT | N° Sera Samples/Pool Tested | Neutralizing Titer (IU/mL) | |
---|---|---|---|
Mean * | Std Dev | ||
BoNT/C | 10 sera | 0.194 | 0.24 |
BoNT/DC | 10 sera | 2.26 | 1.80 |
BoNT/D | 6 pools (21 sera in total) | 0.49 | 0.26 |
BoNT/CD | 7 sera | 0.037 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drigo, I.; Zandonà, L.; Tonon, E.; Capello, K.; Bano, L. Effectiveness of a Bivalent Recombinant Vaccine on the Production of Neutralizing Antibodies Against BoNT/C, BoNT/D, BoNT/CD e BoNT/DC in Bovines. Vaccines 2025, 13, 299. https://doi.org/10.3390/vaccines13030299
Drigo I, Zandonà L, Tonon E, Capello K, Bano L. Effectiveness of a Bivalent Recombinant Vaccine on the Production of Neutralizing Antibodies Against BoNT/C, BoNT/D, BoNT/CD e BoNT/DC in Bovines. Vaccines. 2025; 13(3):299. https://doi.org/10.3390/vaccines13030299
Chicago/Turabian StyleDrigo, Ilenia, Luca Zandonà, Elena Tonon, Katia Capello, and Luca Bano. 2025. "Effectiveness of a Bivalent Recombinant Vaccine on the Production of Neutralizing Antibodies Against BoNT/C, BoNT/D, BoNT/CD e BoNT/DC in Bovines" Vaccines 13, no. 3: 299. https://doi.org/10.3390/vaccines13030299
APA StyleDrigo, I., Zandonà, L., Tonon, E., Capello, K., & Bano, L. (2025). Effectiveness of a Bivalent Recombinant Vaccine on the Production of Neutralizing Antibodies Against BoNT/C, BoNT/D, BoNT/CD e BoNT/DC in Bovines. Vaccines, 13(3), 299. https://doi.org/10.3390/vaccines13030299