Innovative Approaches to Combat Duck Viral Hepatitis: Dual-Specific Anti-DHAV-1 and DHAV-3 Yolk Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Management and Immunization Protocol for Laying Hens
2.2. Extraction and Purification of IgY
2.3. Determination of Antibody Titer by ELISA
2.4. Determination of IgY Neutralization Index by Virus Neutralization Test
2.5. Prophylactic Effect of IgY in Model of Duck Hepatitis Virus Infection
2.5.1. Experimental Protocol
2.5.2. Mortality and Survival Rates
2.5.3. Histopathological Examination
2.5.4. Assessment of Serum Biochemical Parameters
2.5.5. Indexes of Oxidative Stress
2.6. Statistical Analysis
3. Results
3.1. IgY Titer Evaluation by ELISA
3.2. IgY Neutralizing Activity by Virus Neutralization Test
3.3. IgY Effectiveness for DHAV-Infected Ducklings
3.3.1. Mortality and Survival Rates
3.3.2. Histopathological Examination
3.3.3. Evaluating Liver Enzymes and Immune Markers Post-Infection
3.3.4. Evaluating Oxidative Stress Response Post-Infection
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, Y.; Ma, H.; Ding, Y.; Li, Z.; Sun, Y.; Li, M.; Shi, Y. The Pathogenicity of Duck Hepatitis A Virus Types 1 and 3 on Ducklings. Poult. Sci. 2019, 98, 6333–6339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, S.; Wang, Y.; Li, X.; Zhang, T. Duck Hepatitis A Virus Prevalence in Mainland China between 2009 and 2021: A Systematic Review and Meta-Analysis. Prev. Vet. Med. 2022, 208, 105730. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhu, D.; Cheng, A.; Wang, M.; Chen, S.; Jia, R.; Liu, M.; Sun, K.; Zhao, X.; Yang, Q.; et al. Molecular Epidemiology of Duck Hepatitis a Virus Types 1 and 3 in China, 2010–2015. Transbound. Emerg. Dis. 2018, 65, 10–15. [Google Scholar] [CrossRef]
- Fu, Q.; Han, X.; Zhu, C.; Jiao, W.; Liu, R.; Feng, Z.; Huang, Y.; Chen, Z.; Wan, C.; Lai, Z.; et al. Development of the First Officially Licensed Live Attenuated Duck Hepatitis A Virus Type 3 Vaccine Strain HB80 in China and Its Protective Efficacy against DHAV-3 Infection in Ducks. Poult. Sci. 2024, 103, 104087. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, L.; Lu, Y.; Yang, Y.; Xu, M.; Wang, Y.; Liu, J. Treatment Effect of a Flavonoid Prescription on Duck Virus Hepatitis by Its Hepatoprotective and Antioxidative Ability. Pharm. Biol. 2017, 55, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Ming, K.; He, M.; Su, L.; Du, H.; Wang, D.; Wu, Y.; Liu, J. The Inhibitory Effect of Phosphorylated Codonopsis Pilosula Polysaccharide on Autophagosomes Formation Contributes to the Inhibition of Duck Hepatitis A Virus Replication. Poult. Sci. 2020, 99, 2146–2156. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, L.; Yang, J.; Wang, Y.; Yao, F.; Wu, Y.; Wang, D.; Hu, Y.; Liu, J. Anti-DHAV-1 Reproduction and Immuno-Regulatory Effects of a Flavonoid Prescription on Duck Virus Hepatitis. Pharm. Biol. 2017, 55, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Shi, Y.; Wang, R.; Wang, J.; Wang, W.; Zhu, J.; Wang, W.; Wu, Y.; Li, K.; Liu, J. Treatment Effects of Phosphorylated Chrysanthemum Indicum Polysaccharides on Duck Viral Hepatitis by Protecting Mitochondrial Function from Oxidative Damage. Vet. Microbiol. 2022, 275, 109600. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, Y.; Konishi, I.; Tanaka, M.; Sawa, M.; Yamamoto, R.; Endo, I.; Handharyani, E.; Sari, D.; Takama, K.; Fukuda, K.; et al. Development of Neutralization Antibodies against Highly Pathogenic H5N1 Avian Influenza Virus Using Ostrich (Struthio camelus) Yolk. Mol. Med. Rep. 2008, 1, 203–209. [Google Scholar] [CrossRef]
- Alexander, D.J.; Aldous, E.W.; Fuller, C.M. The Long View: A Selective Review of 40 Years of Newcastle Disease Research. Avian Pathol. 2012, 41, 329–335. [Google Scholar] [CrossRef]
- Yin, L.; Chen, L.; Luo, Y.; Lin, L.; Li, Q.; Peng, P.; Du, Y.; Xu, Z.; Xue, C.; Cao, Y.; et al. Recombinant Fiber-2 Protein Protects Muscovy Ducks against Duck Adenovirus 3 (DAdV-3). Virology 2019, 526, 99–104. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Yang, J.; Zhao, D.; Han, K.; Huang, X.; Liu, Q.; Xiao, Y.; Gu, Y.; Li, Y. An IgY Effectively Prevents Goslings from Virulent GAstV Infection. Vaccines 2022, 10, 2090. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.G.; Bok, M.; Vlasova, A.N.; Chattha, K.S.; Fernández, F.M.; Wigdorovitz, A.; Parreño, V.G.; Saif, L.J. IgY Antibodies Protect against Human Rotavirus Induced Diarrhea in the Neonatal Gnotobiotic Piglet Disease Model. PLoS ONE 2012, 7, e42788. [Google Scholar] [CrossRef]
- Lee, D.H.; Jeon, Y.-S.; Park, C.-K.; Kim, S.; Lee, D.S.; Lee, C. Immunoprophylactic Effect of Chicken Egg Yolk Antibody (IgY) against a Recombinant S1 Domain of the Porcine Epidemic Diarrhea Virus Spike Protein in Piglets. Arch. Virol. 2015, 160, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Yousif, A.A.; Mohammad, W.A.; Khodeir, M.H. Oral Administration of Hyperimmune Ig Y: An Immunoecological Approach To Curbing Acute Infectious Bursal Disease Virus Infection. Egypt J. Immunol. 2006, 13, 85–94. [Google Scholar] [PubMed]
- Pereira, E.P.V.; Van Tilburg, M.F.; Florean, E.O.P.T.; Guedes, M.I.F. Egg Yolk Antibodies (IgY) and Their Applications in Human and Veterinary Health: A Review. Int. Immunopharmacol. 2019, 73, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Dias Da Silva, W.; Tambourgi, D.V. IgY: A Promising Antibody for Use in Immunodiagnostic and in Immunotherapy. Vet. Immunol. Immunopathol. 2010, 135, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W. Comparison between Immunoglobulins IgY and the Vaccine for Prevention of Infectious Bursal Disease in Chickens. Glob. Veterineria 2011, 6, 16–24. [Google Scholar]
- Li, X.; Wang, L.; Zhen, Y.; Li, S.; Xu, Y. Chicken Egg Yolk Antibodies (IgY) as Non-Antibiotic Production Enhancers for Use in Swine Production: A Review. J. Anim. Sci. Biotechnol. 2015, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Spillner, E.; Braren, I.; Greunke, K.; Seismann, H.; Blank, S.; Du Plessis, D. Avian IgY Antibodies and Their Recombinant Equivalents in Research, Diagnostics and Therapy. Biologicals 2012, 40, 313–322. [Google Scholar] [CrossRef]
- Schade, R.; Calzado, E.G.; Sarmiento, R.; Chacana, P.A.; Porankiewicz-Asplund, J.; Terzolo, H.R. Chicken Egg Yolk Antibodies (IgY-Technology): A Review of Progress in Production and Use in Research and Human and Veterinary Medicine. Altern. Lab. Anim. 2005, 33, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D.; Chacana, P.A.; Calzado, E.G.; Brembs, B.; Schade, R. IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation. J. Vis. Exp. 2011, 51, e3084. [Google Scholar] [CrossRef]
- Polson, A.; von Wechmar, M.B.; van Regenmortel, M.H.V. Isolation of Viral IgY Antibodies from Yolks of Immunized Hens. Immunol. Commun. 1980, 9, 475–493. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wen, Z.; Zhang, Y.; Zhang, B.; Chen, Y.; Xing, G.; Wu, Y.; Zhou, Z.; Liu, X.; Hou, S. Effects of DHAV-3 Infection on Innate Immunity, Antioxidant Capacity, and Lipid Metabolism in Ducks with Different DHAV-3 Susceptibilities. Poult. Sci. 2024, 103, 103374. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.S.; Arunachalam, P.; O’Hagan, D.T. Emerging Concepts in the Science of Vaccine Adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef] [PubMed]
- West, A.P.; Herr, A.B.; Bjorkman, P.J. The Chicken Yolk Sac IgY Receptor, a Functional Equivalent of the Mammalian MHC-Related Fc Receptor, Is a Phospholipase A2 Receptor Homolog. Immunity 2004, 20, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.N.; Brum, B.C.; Cruz, P.B.; Molinaro, C.M.; Silva, V.L.; Chaves, S.A.D.M. Production and Characterization of IgY against Canine IgG: Prospect of a New Tool for the Immunodiagnostic of Canine Diseases. Braz. Arch. Biol. Technol. 2014, 57, 523–531. [Google Scholar] [CrossRef]
- El-Kafrawy, S.A.; Odle, A.; Abbas, A.T.; Hassan, A.M.; Abdel-dayem, U.A.; Qureshi, A.K.; Wong, L.-Y.R.; Zheng, J.; Meyerholz, D.K.; Perlman, S.; et al. SARS-CoV-2-Specific Immunoglobulin Y Antibodies Are Protective in Infected Mice. PLoS Pathog. 2022, 18, e1010782. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.T.L.; Deodato, R.M.; Villar, L.M. Exploring the Potential Usefulness of IgY for Antiviral Therapy: A Current Review. Int. J. Biol. Macromol. 2021, 189, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiong, W.; Zeng, L.; Wang, Y.; Zhang, S.; Xu, M.; Song, M.; Wang, Y.; Du, H.; Liu, J.; et al. Bush Sophora Root Polysaccharide and Its Sulfate Can Scavenge Free Radicals Resulted from Duck Virus Hepatitis. Int. J. Biol. Macromol. 2014, 66, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Tell, G.; Vascotto, C.; Tiribelli, C. Alterations in the Redox State and Liver Damage: Hints from the EASL Basic School of Hepatology. J. Hepatol. 2013, 58, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.-Y.; Wang, N.; Zhang, Z.-J.; Lao, L.; Wong, C.-W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, Y.; He, L.; Zhang, M.; Wang, L.; Li, Z.; Li, X. Immunomodulatory Effects of Chicken Egg Yolk Antibodies (IgY) against Experimental Shewanella Marisflavi AP629 Infections in Sea Cucumbers (Apostichopus Japonicus). Fish Shellfish. Immunol. 2019, 84, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, B.; Sun, S.; Liu, N.; Li, Y.; Lan, M.; Wang, X.; Zhang, Y.; Wu, A.; Yang, S.; et al. Immunoprotection Effects of Chicken Egg Yolk Immunoglobulins (IgY) against Aeromonas Veronii Infection in Sinocyclocheilus Grahami. Aquaculture 2023, 563, 738935. [Google Scholar] [CrossRef]
- Zeynalian, H.; Samadi, R. Assessment of the Safety of Chicken Egg Yolk Antibody (IgY) Consumption by Measuring the Activity of Antioxidant Enzymes (Superoxide Dismutase‚ Catalase‚ Glutathione Peroxidase) and Malondialdehyde Concentration as a Lipid Peroxidation Marker in Mice. J. Paramed. Sci. 2017, 8, 29–35. [Google Scholar]
- Xiong, W.; Wang, R.; Mao, W.; Wu, Y.; Wang, D.; Hu, Y.; Liu, J. Icariin and Its Phosphorylated Derivatives Reduce Duck Hepatitis A Virus Serotype 1-Induced Oxidative Stress and Inflammatory Damage in Duck Embryonic Hepatocytes through Mitochondrial Regulation. Res. Vet. Sci. 2021, 139, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Exploring the Molecular Mechanisms of Sophorae Tonkinensis Radix et Rhizoma Anti-DHAV-1 by Network Pharmacology Analysis. PVJ 2022, 42, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chen, Y.; Du, H.; Zhang, S.; Wang, Y.; Zeng, L.; Jintong Shi, J.Y.; Wu, Y.; Wang, D.; Hu, Y.; et al. Raw rehmannia radix polysaccharide can effectively release peroxidative injury induced by duck hepatitis a virus. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 8–21. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Chen, Y.; Liang, S.; Liu, D.; Fan, W.; Xu, Y.; Liu, H.; Zhou, Z.; Liu, X.; et al. Dynamic Transcriptome Reveals the Mechanism of Liver Injury Caused by DHAV-3 Infection in Pekin Duck. Front. Immunol. 2020, 11, 568565. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, M.; Lee, J.; Seo, Y.; Ham, Y.; Lee, J.; Lee, J.; Kim, J.-K.; Kwon, M.-H. Antigen-Binding Affinity and Thermostability of Chimeric Mouse-Chicken IgY and Mouse-Human IgG Antibodies with Identical Variable Domains. Sci. Rep. 2019, 9, 19242. [Google Scholar] [CrossRef]
- Müller, S.; Schubert, A.; Zajac, J.; Dyck, T.; Oelkrug, C. IgY Antibodies in Human Nutrition for Disease Prevention. Nutr. J. 2015, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, A.; Fujii, T.; Tochinai, S. Membrane Receptors on Xenopus Macrophages for Two Classes of Immunoglobulins (IgM and IgY) and the Third Complement Component (C3). J. Immunol. 1984, 133, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
Virus Dilution | Deaths | Survivors | Cumulative Death | Cumulative Survivor | Mortality |
---|---|---|---|---|---|
103.03 | 4 | 0 | 12 | 0 | 100.0% |
103.33 | 3 | 1 | 8 | 1 | 88.9% |
103.63 | 1 | 3 | 5 | 4 | 55.6% |
103.93 | 2 | 2 | 4 | 6 | 40.0% |
104.23 | 1 | 3 | 2 | 9 | 18.2% |
104.53 | 1 | 3 | 1 | 12 | 7.7% |
Virus Dilution | Death | Survivor | Cumulative Death | Cumulative Survivors | Mortality |
---|---|---|---|---|---|
102.70 | 3 | 1 | 9 | 1 | 90.0% |
103.40 | 2 | 2 | 6 | 3 | 66.7% |
104 | 2 | 2 | 4 | 5 | 44.4% |
104.6 | 1 | 3 | 2 | 8 | 20.0% |
105.2 | 1 | 3 | 1 | 11 | 8.3% |
Biochemical Indicators | Neg CON | 95% CI (Neg CON) | Pos CON | 95% CI (Pos CON) | IgY | 95% CI (IgY) | p-Value |
---|---|---|---|---|---|---|---|
TP (g/L) | 20.14 | (17.63, 23.50) | 19.54 | (18.59, 20.59) | 20.69 | (17.06, 22.42) | 0.647 |
ALB (g/L) | 8.31 | (6.76, 9.73) | 8.23 | (7.60, 8.77) | 9.24 | (8.42, 9.95) | 0.146 |
GLB (g/L) | 11.53 | (8.57, 14.14) | 11.335 | (10.45, 12.66) | 12.11 | (10.41, 13.46) | 0.731 |
A/G | 0.68 | (0.66, 0.69) | 0.71 | (0.60, 0.79) | 0.68 | (0.61, 0.75) | 0.676 |
AST (U/L) | 38.63 b | (18.00, 83.40) | 164.05 a | (42.29, 309.70) | 51.65 ab | (38.70, 73.90) | 0.038 |
ALT (U/L) | 20.68 b | (17.47, 27.71) | 64.08 a | (37.02, 87.52) | 35.25 b | (14.58, 50.63) | 0.002 |
ALP (U/L) | 892.21 ab | (796.67, 1104.40) | 1094.45 a | (843.05, 1279.02) | 751.74 b | (587.92, 866.45) | 0.009 |
Indicators of Oxidative Stress | Neg CON | 95% CI (Neg CON) | Pos CON | 95% CI (Pos CON) | IgY | 95% CI (IgY) | p-Value |
---|---|---|---|---|---|---|---|
MDA (nmol/mg) | 4.18 b | (3.23, 4.76) | 5.31 a | (4.09, 5.98) | 3.51 b | (3.11, 3.84) | 0.001 |
T-SOD (U/mL) | 115.81 a | (108.05, 128.30) | 92.35 b | (80.19, 107.20) | 142.49 a | (129.15, 169.67) | <0.001 |
CAT (U/mL) | 7.18 ab | (6.14, 8.27) | 5.19 b | (4.29, 6.59) | 8.74 a | (6.82, 10.7) | 0.003 |
GSH-PX (U/mL) | 275.60 a | (250.55, 291.43) | 250.29 b | (228.13, 267.69) | 297.76 a | (283.52, 312.53) | <0.001 |
T-AOC (mmol/L) | 0.38 | (0.24, 0.54) | 0.30 | (0.19, 0.38) | 0.39 | (0.31, 0.46) | 0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, S.; Yang, Y.; Zhao, C.; Liu, A.; He, P. Innovative Approaches to Combat Duck Viral Hepatitis: Dual-Specific Anti-DHAV-1 and DHAV-3 Yolk Antibodies. Vaccines 2025, 13, 154. https://doi.org/10.3390/vaccines13020154
Lei S, Yang Y, Zhao C, Liu A, He P. Innovative Approaches to Combat Duck Viral Hepatitis: Dual-Specific Anti-DHAV-1 and DHAV-3 Yolk Antibodies. Vaccines. 2025; 13(2):154. https://doi.org/10.3390/vaccines13020154
Chicago/Turabian StyleLei, Siqi, Yuanhe Yang, Chengchen Zhao, Anguo Liu, and Pingli He. 2025. "Innovative Approaches to Combat Duck Viral Hepatitis: Dual-Specific Anti-DHAV-1 and DHAV-3 Yolk Antibodies" Vaccines 13, no. 2: 154. https://doi.org/10.3390/vaccines13020154
APA StyleLei, S., Yang, Y., Zhao, C., Liu, A., & He, P. (2025). Innovative Approaches to Combat Duck Viral Hepatitis: Dual-Specific Anti-DHAV-1 and DHAV-3 Yolk Antibodies. Vaccines, 13(2), 154. https://doi.org/10.3390/vaccines13020154